MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofth Structured version   Unicode version

Theorem cofth 15423
Description: The composition of two faithful functors is faithful. Proposition 3.30(c) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofth.f  |-  ( ph  ->  F  e.  ( C Faith 
D ) )
cofth.g  |-  ( ph  ->  G  e.  ( D Faith 
E ) )
Assertion
Ref Expression
cofth  |-  ( ph  ->  ( G  o.func  F )  e.  ( C Faith  E ) )

Proof of Theorem cofth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 15350 . . 3  |-  Rel  ( C  Func  E )
2 fthfunc 15395 . . . . 5  |-  ( C Faith 
D )  C_  ( C  Func  D )
3 cofth.f . . . . 5  |-  ( ph  ->  F  e.  ( C Faith 
D ) )
42, 3sseldi 3487 . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
5 fthfunc 15395 . . . . 5  |-  ( D Faith 
E )  C_  ( D  Func  E )
6 cofth.g . . . . 5  |-  ( ph  ->  G  e.  ( D Faith 
E ) )
75, 6sseldi 3487 . . . 4  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
84, 7cofucl 15376 . . 3  |-  ( ph  ->  ( G  o.func  F )  e.  ( C  Func  E
) )
9 1st2nd 6819 . . 3  |-  ( ( Rel  ( C  Func  E )  /\  ( G  o.func 
F )  e.  ( C  Func  E )
)  ->  ( G  o.func  F )  =  <. ( 1st `  ( G  o.func  F ) ) ,  ( 2nd `  ( G  o.func  F )
) >. )
101, 8, 9sylancr 661 . 2  |-  ( ph  ->  ( G  o.func  F )  =  <. ( 1st `  ( G  o.func 
F ) ) ,  ( 2nd `  ( G  o.func 
F ) ) >.
)
11 1st2ndbr 6822 . . . . 5  |-  ( ( Rel  ( C  Func  E )  /\  ( G  o.func 
F )  e.  ( C  Func  E )
)  ->  ( 1st `  ( G  o.func  F )
) ( C  Func  E ) ( 2nd `  ( G  o.func 
F ) ) )
121, 8, 11sylancr 661 . . . 4  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) ) ( C  Func  E )
( 2nd `  ( G  o.func 
F ) ) )
13 eqid 2454 . . . . . . . 8  |-  ( Base `  D )  =  (
Base `  D )
14 eqid 2454 . . . . . . . 8  |-  ( Hom  `  D )  =  ( Hom  `  D )
15 eqid 2454 . . . . . . . 8  |-  ( Hom  `  E )  =  ( Hom  `  E )
16 relfth 15397 . . . . . . . . 9  |-  Rel  ( D Faith  E )
176adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  G  e.  ( D Faith  E ) )
18 1st2ndbr 6822 . . . . . . . . 9  |-  ( ( Rel  ( D Faith  E
)  /\  G  e.  ( D Faith  E ) )  ->  ( 1st `  G
) ( D Faith  E
) ( 2nd `  G
) )
1916, 17, 18sylancr 661 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  G ) ( D Faith  E ) ( 2nd `  G ) )
20 eqid 2454 . . . . . . . . . 10  |-  ( Base `  C )  =  (
Base `  C )
21 relfunc 15350 . . . . . . . . . . 11  |-  Rel  ( C  Func  D )
224adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  F  e.  ( C  Func  D
) )
23 1st2ndbr 6822 . . . . . . . . . . 11  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
2421, 22, 23sylancr 661 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
2520, 13, 24funcf1 15354 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  F ) : ( Base `  C
) --> ( Base `  D
) )
26 simprl 754 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  x  e.  ( Base `  C
) )
2725, 26ffvelrnd 6008 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  F
) `  x )  e.  ( Base `  D
) )
28 simprr 755 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  y  e.  ( Base `  C
) )
2925, 28ffvelrnd 6008 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  F
) `  y )  e.  ( Base `  D
) )
3013, 14, 15, 19, 27, 29fthf1 15405 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) ) : ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) -1-1-> ( ( ( 1st `  G ) `
 ( ( 1st `  F ) `  x
) ) ( Hom  `  E ) ( ( 1st `  G ) `
 ( ( 1st `  F ) `  y
) ) ) )
31 eqid 2454 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
32 relfth 15397 . . . . . . . . 9  |-  Rel  ( C Faith  D )
333adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  F  e.  ( C Faith  D ) )
34 1st2ndbr 6822 . . . . . . . . 9  |-  ( ( Rel  ( C Faith  D
)  /\  F  e.  ( C Faith  D ) )  ->  ( 1st `  F
) ( C Faith  D
) ( 2nd `  F
) )
3532, 33, 34sylancr 661 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  F ) ( C Faith  D ) ( 2nd `  F ) )
3620, 31, 14, 35, 26, 28fthf1 15405 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  F
) y ) : ( x ( Hom  `  C ) y )
-1-1-> ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) )
37 f1co 5772 . . . . . . 7  |-  ( ( ( ( ( 1st `  F ) `  x
) ( 2nd `  G
) ( ( 1st `  F ) `  y
) ) : ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) -1-1-> ( ( ( 1st `  G ) `
 ( ( 1st `  F ) `  x
) ) ( Hom  `  E ) ( ( 1st `  G ) `
 ( ( 1st `  F ) `  y
) ) )  /\  ( x ( 2nd `  F ) y ) : ( x ( Hom  `  C )
y ) -1-1-> ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )  ->  (
( ( ( 1st `  F ) `  x
) ( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) : ( x ( Hom  `  C )
y ) -1-1-> ( ( ( 1st `  G
) `  ( ( 1st `  F ) `  x ) ) ( Hom  `  E )
( ( 1st `  G
) `  ( ( 1st `  F ) `  y ) ) ) )
3830, 36, 37syl2anc 659 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( ( 1st `  F ) `  x
) ( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) : ( x ( Hom  `  C )
y ) -1-1-> ( ( ( 1st `  G
) `  ( ( 1st `  F ) `  x ) ) ( Hom  `  E )
( ( 1st `  G
) `  ( ( 1st `  F ) `  y ) ) ) )
397adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  G  e.  ( D  Func  E
) )
4020, 22, 39, 26, 28cofu2nd 15373 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  ( G  o.func 
F ) ) y )  =  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )
41 eqidd 2455 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( Hom  `  C
) y )  =  ( x ( Hom  `  C ) y ) )
4220, 22, 39, 26cofu1 15372 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  ( G  o.func 
F ) ) `  x )  =  ( ( 1st `  G
) `  ( ( 1st `  F ) `  x ) ) )
4320, 22, 39, 28cofu1 15372 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  ( G  o.func 
F ) ) `  y )  =  ( ( 1st `  G
) `  ( ( 1st `  F ) `  y ) ) )
4442, 43oveq12d 6288 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  ( G  o.func 
F ) ) `  x ) ( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) )  =  ( ( ( 1st `  G ) `  (
( 1st `  F
) `  x )
) ( Hom  `  E
) ( ( 1st `  G ) `  (
( 1st `  F
) `  y )
) ) )
4540, 41, 44f1eq123d 5793 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( x ( 2nd `  ( G  o.func  F )
) y ) : ( x ( Hom  `  C ) y )
-1-1-> ( ( ( 1st `  ( G  o.func  F )
) `  x )
( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) )  <->  ( (
( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) : ( x ( Hom  `  C )
y ) -1-1-> ( ( ( 1st `  G
) `  ( ( 1st `  F ) `  x ) ) ( Hom  `  E )
( ( 1st `  G
) `  ( ( 1st `  F ) `  y ) ) ) ) )
4638, 45mpbird 232 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  ( G  o.func 
F ) ) y ) : ( x ( Hom  `  C
) y ) -1-1-> ( ( ( 1st `  ( G  o.func 
F ) ) `  x ) ( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) ) )
4746ralrimivva 2875 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) ( x ( 2nd `  ( G  o.func 
F ) ) y ) : ( x ( Hom  `  C
) y ) -1-1-> ( ( ( 1st `  ( G  o.func 
F ) ) `  x ) ( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) ) )
4820, 31, 15isfth2 15403 . . . 4  |-  ( ( 1st `  ( G  o.func 
F ) ) ( C Faith  E ) ( 2nd `  ( G  o.func 
F ) )  <->  ( ( 1st `  ( G  o.func  F ) ) ( C  Func  E ) ( 2nd `  ( G  o.func 
F ) )  /\  A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C
) ( x ( 2nd `  ( G  o.func 
F ) ) y ) : ( x ( Hom  `  C
) y ) -1-1-> ( ( ( 1st `  ( G  o.func 
F ) ) `  x ) ( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) ) ) )
4912, 47, 48sylanbrc 662 . . 3  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) ) ( C Faith  E ) ( 2nd `  ( G  o.func 
F ) ) )
50 df-br 4440 . . 3  |-  ( ( 1st `  ( G  o.func 
F ) ) ( C Faith  E ) ( 2nd `  ( G  o.func 
F ) )  <->  <. ( 1st `  ( G  o.func  F )
) ,  ( 2nd `  ( G  o.func  F )
) >.  e.  ( C Faith 
E ) )
5149, 50sylib 196 . 2  |-  ( ph  -> 
<. ( 1st `  ( G  o.func 
F ) ) ,  ( 2nd `  ( G  o.func 
F ) ) >.  e.  ( C Faith  E ) )
5210, 51eqeltrd 2542 1  |-  ( ph  ->  ( G  o.func  F )  e.  ( C Faith  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   <.cop 4022   class class class wbr 4439    o. ccom 4992   Rel wrel 4993   -1-1->wf1 5567   ` cfv 5570  (class class class)co 6270   1stc1st 6771   2ndc2nd 6772   Basecbs 14716   Hom chom 14795    Func cfunc 15342    o.func ccofu 15344   Faith cfth 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-map 7414  df-ixp 7463  df-cat 15157  df-cid 15158  df-func 15346  df-cofu 15348  df-fth 15393
This theorem is referenced by:  coffth  15424
  Copyright terms: Public domain W3C validator