Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coeq0i Structured version   Unicode version

Theorem coeq0i 29016
Description: coeq0 29015 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
coeq0i  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( A  o.  B )  =  (/) )

Proof of Theorem coeq0i
StepHypRef Expression
1 frn 5562 . . . . . 6  |-  ( B : E --> F  ->  ran  B  C_  F )
213ad2ant2 1005 . . . . 5  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ran  B 
C_  F )
3 sslin 3573 . . . . 5  |-  ( ran 
B  C_  F  ->  ( dom  A  i^i  ran  B )  C_  ( dom  A  i^i  F ) )
42, 3syl 16 . . . 4  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  ran  B
)  C_  ( dom  A  i^i  F ) )
5 fdm 5560 . . . . . . 7  |-  ( A : C --> D  ->  dom  A  =  C )
653ad2ant1 1004 . . . . . 6  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  dom  A  =  C )
76ineq1d 3548 . . . . 5  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  F )  =  ( C  i^i  F ) )
8 simp3 985 . . . . 5  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( C  i^i  F )  =  (/) )
97, 8eqtrd 2473 . . . 4  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  F )  =  (/) )
104, 9sseqtrd 3389 . . 3  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  ran  B
)  C_  (/) )
11 ss0 3665 . . 3  |-  ( ( dom  A  i^i  ran  B )  C_  (/)  ->  ( dom  A  i^i  ran  B
)  =  (/) )
1210, 11syl 16 . 2  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  ran  B
)  =  (/) )
13 coeq0 29015 . 2  |-  ( ( A  o.  B )  =  (/)  <->  ( dom  A  i^i  ran  B )  =  (/) )
1412, 13sylibr 212 1  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( A  o.  B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 960    = wceq 1364    i^i cin 3324    C_ wss 3325   (/)c0 3634   dom cdm 4836   ran crn 4837    o. ccom 4840   -->wf 5411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-br 4290  df-opab 4348  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-fn 5418  df-f 5419
This theorem is referenced by:  diophren  29077
  Copyright terms: Public domain W3C validator