MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulhi Structured version   Unicode version

Theorem coemulhi 23076
Description: The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1  |-  A  =  (coeff `  F )
coeadd.2  |-  B  =  (coeff `  G )
coemulhi.3  |-  M  =  (deg `  F )
coemulhi.4  |-  N  =  (deg `  G )
Assertion
Ref Expression
coemulhi  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  oF  x.  G ) ) `
 ( M  +  N ) )  =  ( ( A `  M )  x.  ( B `  N )
) )

Proof of Theorem coemulhi
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 coemulhi.3 . . . . 5  |-  M  =  (deg `  F )
2 dgrcl 23055 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
31, 2syl5eqel 2521 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  M  e.  NN0 )
4 coemulhi.4 . . . . 5  |-  N  =  (deg `  G )
5 dgrcl 23055 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
64, 5syl5eqel 2521 . . . 4  |-  ( G  e.  (Poly `  S
)  ->  N  e.  NN0 )
7 nn0addcl 10905 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
83, 6, 7syl2an 479 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  +  N )  e.  NN0 )
9 coefv0.1 . . . 4  |-  A  =  (coeff `  F )
10 coeadd.2 . . . 4  |-  B  =  (coeff `  G )
119, 10coemul 23074 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  ( M  +  N
)  e.  NN0 )  ->  ( (coeff `  ( F  oF  x.  G
) ) `  ( M  +  N )
)  =  sum_ k  e.  ( 0 ... ( M  +  N )
) ( ( A `
 k )  x.  ( B `  (
( M  +  N
)  -  k ) ) ) )
128, 11mpd3an3 1361 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  oF  x.  G ) ) `
 ( M  +  N ) )  = 
sum_ k  e.  ( 0 ... ( M  +  N ) ) ( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) ) )
136adantl 467 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  NN0 )
1413nn0ge0d 10928 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  0  <_  N )
153adantr 466 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  NN0 )
1615nn0red 10926 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  RR )
1713nn0red 10926 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  RR )
1816, 17addge01d 10200 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( 0  <_  N  <->  M  <_  ( M  +  N ) ) )
1914, 18mpbid 213 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  <_  ( M  +  N ) )
20 nn0uz 11193 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2115, 20syl6eleq 2527 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  ( ZZ>= `  0 )
)
228nn0zd 11038 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  +  N )  e.  ZZ )
23 elfz5 11790 . . . . . 6  |-  ( ( M  e.  ( ZZ>= ` 
0 )  /\  ( M  +  N )  e.  ZZ )  ->  ( M  e.  ( 0 ... ( M  +  N ) )  <->  M  <_  ( M  +  N ) ) )
2421, 22, 23syl2anc 665 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  e.  ( 0 ... ( M  +  N )
)  <->  M  <_  ( M  +  N ) ) )
2519, 24mpbird 235 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  ( 0 ... ( M  +  N )
) )
2625snssd 4148 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  { M }  C_  ( 0 ... ( M  +  N
) ) )
27 elsni 4027 . . . . . 6  |-  ( k  e.  { M }  ->  k  =  M )
2827adantl 467 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
k  =  M )
29 fveq2 5881 . . . . . 6  |-  ( k  =  M  ->  ( A `  k )  =  ( A `  M ) )
30 oveq2 6313 . . . . . . 7  |-  ( k  =  M  ->  (
( M  +  N
)  -  k )  =  ( ( M  +  N )  -  M ) )
3130fveq2d 5885 . . . . . 6  |-  ( k  =  M  ->  ( B `  ( ( M  +  N )  -  k ) )  =  ( B `  ( ( M  +  N )  -  M
) ) )
3229, 31oveq12d 6323 . . . . 5  |-  ( k  =  M  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  (
( M  +  N
)  -  M ) ) ) )
3328, 32syl 17 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  =  ( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M
) ) ) )
3416recnd 9668 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  CC )
3517recnd 9668 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  CC )
3634, 35pncan2d 9987 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( M  +  N )  -  M )  =  N )
3736fveq2d 5885 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( B `  ( ( M  +  N )  -  M
) )  =  ( B `  N ) )
3837oveq2d 6321 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  (
( M  +  N
)  -  M ) ) )  =  ( ( A `  M
)  x.  ( B `
 N ) ) )
399coef3 23054 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
4039adantr 466 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  A : NN0
--> CC )
4140, 15ffvelrnd 6038 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( A `  M )  e.  CC )
4210coef3 23054 . . . . . . . . 9  |-  ( G  e.  (Poly `  S
)  ->  B : NN0
--> CC )
4342adantl 467 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  B : NN0
--> CC )
4443, 13ffvelrnd 6038 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( B `  N )  e.  CC )
4541, 44mulcld 9662 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  N
) )  e.  CC )
4638, 45eqeltrd 2517 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  (
( M  +  N
)  -  M ) ) )  e.  CC )
4746adantr 466 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M ) ) )  e.  CC )
4833, 47eqeltrd 2517 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  e.  CC )
49 simpl 458 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  F  e.  (Poly `  S ) )
50 eldifi 3593 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  e.  ( 0 ... ( M  +  N ) ) )
51 elfznn0 11885 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( M  +  N
) )  ->  k  e.  NN0 )
5250, 51syl 17 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  e.  NN0 )
539, 1dgrub 23056 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0  /\  ( A `
 k )  =/=  0 )  ->  k  <_  M )
54533expia 1207 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0 )  ->  (
( A `  k
)  =/=  0  -> 
k  <_  M )
)
5549, 52, 54syl2an 479 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( A `  k )  =/=  0  ->  k  <_  M )
)
5655necon1bd 2649 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  k  <_  M  ->  ( A `  k )  =  0 ) )
5756imp 430 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  ( A `  k )  =  0 )
5857oveq1d 6320 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( 0  x.  ( B `  (
( M  +  N
)  -  k ) ) ) )
5943ad2antrr 730 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  B : NN0 --> CC )
6050ad2antlr 731 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  k  e.  ( 0 ... ( M  +  N )
) )
61 fznn0sub 11829 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( M  +  N
) )  ->  (
( M  +  N
)  -  k )  e.  NN0 )
6260, 61syl 17 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( M  +  N
)  -  k )  e.  NN0 )
6359, 62ffvelrnd 6038 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  ( B `  ( ( M  +  N )  -  k ) )  e.  CC )
6463mul02d 9830 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
0  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
6558, 64eqtrd 2470 . . . 4  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
6616adantr 466 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  M  e.  RR )
6750adantl 467 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  ( 0 ... ( M  +  N ) ) )
6867, 51syl 17 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  NN0 )
6968nn0red 10926 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  RR )
7017adantr 466 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  N  e.  RR )
7166, 69, 70leadd1d 10206 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  <_  k  <->  ( M  +  N )  <_  ( k  +  N ) ) )
728adantr 466 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  +  N
)  e.  NN0 )
7372nn0red 10926 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  +  N
)  e.  RR )
7473, 69, 70lesubadd2d 10211 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( ( M  +  N )  -  k )  <_  N  <->  ( M  +  N )  <_  ( k  +  N ) ) )
7571, 74bitr4d 259 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  <_  k  <->  ( ( M  +  N
)  -  k )  <_  N ) )
7675notbid 295 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  M  <_ 
k  <->  -.  ( ( M  +  N )  -  k )  <_  N ) )
7776biimpa 486 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  -.  ( ( M  +  N )  -  k
)  <_  N )
78 simpr 462 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  G  e.  (Poly `  S ) )
7950, 61syl 17 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
( ( M  +  N )  -  k
)  e.  NN0 )
8010, 4dgrub 23056 . . . . . . . . . . 11  |-  ( ( G  e.  (Poly `  S )  /\  (
( M  +  N
)  -  k )  e.  NN0  /\  ( B `  ( ( M  +  N )  -  k ) )  =/=  0 )  -> 
( ( M  +  N )  -  k
)  <_  N )
81803expia 1207 . . . . . . . . . 10  |-  ( ( G  e.  (Poly `  S )  /\  (
( M  +  N
)  -  k )  e.  NN0 )  -> 
( ( B `  ( ( M  +  N )  -  k
) )  =/=  0  ->  ( ( M  +  N )  -  k
)  <_  N )
)
8278, 79, 81syl2an 479 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( B `  ( ( M  +  N )  -  k
) )  =/=  0  ->  ( ( M  +  N )  -  k
)  <_  N )
)
8382necon1bd 2649 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  ( ( M  +  N )  -  k )  <_  N  ->  ( B `  ( ( M  +  N )  -  k
) )  =  0 ) )
8483imp 430 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  ( ( M  +  N )  -  k )  <_  N )  ->  ( B `  ( ( M  +  N )  -  k ) )  =  0 )
8577, 84syldan 472 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  ( B `  ( ( M  +  N )  -  k ) )  =  0 )
8685oveq2d 6321 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 k )  x.  0 ) )
8740ad2antrr 730 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  A : NN0 --> CC )
8852ad2antlr 731 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  k  e.  NN0 )
8987, 88ffvelrnd 6038 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  ( A `  k )  e.  CC )
9089mul01d 9831 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  0 )  =  0 )
9186, 90eqtrd 2470 . . . 4  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
92 eldifsni 4129 . . . . . . 7  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  =/=  M )
9392adantl 467 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  =/=  M )
9469, 66letri3d 9776 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( k  =  M  <-> 
( k  <_  M  /\  M  <_  k ) ) )
9594necon3abid 2677 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( k  =/=  M  <->  -.  ( k  <_  M  /\  M  <_  k ) ) )
9693, 95mpbid 213 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  -.  ( k  <_  M  /\  M  <_  k ) )
97 ianor 490 . . . . 5  |-  ( -.  ( k  <_  M  /\  M  <_  k )  <-> 
( -.  k  <_  M  \/  -.  M  <_  k ) )
9896, 97sylib 199 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  k  <_  M  \/  -.  M  <_  k ) )
9965, 91, 98mpjaodan 793 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  =  0 )
100 fzfid 12183 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( 0 ... ( M  +  N ) )  e. 
Fin )
10126, 48, 99, 100fsumss 13769 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  sum_ k  e.  ( 0 ... ( M  +  N ) ) ( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) ) )
10232sumsn 13785 . . . 4  |-  ( ( M  e.  NN0  /\  ( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M ) ) )  e.  CC )  ->  sum_ k  e.  { M }  ( ( A `
 k )  x.  ( B `  (
( M  +  N
)  -  k ) ) )  =  ( ( A `  M
)  x.  ( B `
 ( ( M  +  N )  -  M ) ) ) )
10315, 46, 102syl2anc 665 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  (
( M  +  N
)  -  M ) ) ) )
104103, 38eqtrd 2470 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  N
) ) )
10512, 101, 1043eqtr2d 2476 1  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  oF  x.  G ) ) `
 ( M  +  N ) )  =  ( ( A `  M )  x.  ( B `  N )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625    \ cdif 3439   {csn 4002   class class class wbr 4426   -->wf 5597   ` cfv 5601  (class class class)co 6305    oFcof 6543   CCcc 9536   RRcr 9537   0cc0 9538    + caddc 9541    x. cmul 9543    <_ cle 9675    - cmin 9859   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11782   sum_csu 13730  Polycply 23006  coeffccoe 23008  degcdgr 23009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11783  df-fzo 11914  df-fl 12025  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530  df-rlim 13531  df-sum 13731  df-0p 22505  df-ply 23010  df-coe 23012  df-dgr 23013
This theorem is referenced by:  dgrmul  23092  plymul0or  23102  plydivlem4  23117  vieta1lem2  23132
  Copyright terms: Public domain W3C validator