MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeu Structured version   Visualization version   Unicode version

Theorem coeeu 23179
Description: Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
coeeu  |-  ( F  e.  (Poly `  S
)  ->  E! a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
Distinct variable groups:    z, k    n, a, F    S, a, n    k, a, z, n
Allowed substitution hints:    S( z, k)    F( z, k)

Proof of Theorem coeeu
Dummy variables  b 
j  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 23154 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
21sseli 3428 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
3 elply2 23150 . . . . . 6  |-  ( F  e.  (Poly `  CC ) 
<->  ( CC  C_  CC  /\ 
E. n  e.  NN0  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
43simprbi 466 . . . . 5  |-  ( F  e.  (Poly `  CC )  ->  E. n  e.  NN0  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
5 rexcom 2952 . . . . 5  |-  ( E. n  e.  NN0  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  <->  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
64, 5sylib 200 . . . 4  |-  ( F  e.  (Poly `  CC )  ->  E. a  e.  ( ( CC  u.  {
0 } )  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
72, 6syl 17 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
8 0cn 9635 . . . . . . 7  |-  0  e.  CC
9 snssi 4116 . . . . . . 7  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
108, 9ax-mp 5 . . . . . 6  |-  { 0 }  C_  CC
11 ssequn2 3607 . . . . . 6  |-  ( { 0 }  C_  CC  <->  ( CC  u.  { 0 } )  =  CC )
1210, 11mpbi 212 . . . . 5  |-  ( CC  u.  { 0 } )  =  CC
1312oveq1i 6300 . . . 4  |-  ( ( CC  u.  { 0 } )  ^m  NN0 )  =  ( CC  ^m 
NN0 )
1413rexeqi 2992 . . 3  |-  ( E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  E. a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
157, 14sylib 200 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
16 reeanv 2958 . . . 4  |-  ( E. n  e.  NN0  E. m  e.  NN0  ( ( ( a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  <->  ( E. n  e.  NN0  ( ( a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. m  e.  NN0  (
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )
17 simp1l 1032 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  e.  (Poly `  S ) )
18 simp1rl 1073 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  a  e.  ( CC  ^m  NN0 )
)
19 simp1rr 1074 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  b  e.  ( CC  ^m  NN0 )
)
20 simp2l 1034 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  n  e.  NN0 )
21 simp2r 1035 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  m  e.  NN0 )
22 simp3ll 1079 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 } )
23 simp3rl 1081 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 } )
24 simp3lr 1080 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
25 oveq1 6297 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
z ^ k )  =  ( w ^
k ) )
2625oveq2d 6306 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( a `
 k )  x.  ( w ^ k
) ) )
2726sumeq2sdv 13770 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( w ^ k ) ) )
28 fveq2 5865 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
a `  k )  =  ( a `  j ) )
29 oveq2 6298 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
w ^ k )  =  ( w ^
j ) )
3028, 29oveq12d 6308 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( a `  k
)  x.  ( w ^ k ) )  =  ( ( a `
 j )  x.  ( w ^ j
) ) )
3130cbvsumv 13762 . . . . . . . . . 10  |-  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) )
3227, 31syl6eq 2501 . . . . . . . . 9  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3332cbvmptv 4495 . . . . . . . 8  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3424, 33syl6eq 2501 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) ) )
35 simp3rr 1082 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )
3625oveq2d 6306 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( b `  k
)  x.  ( z ^ k ) )  =  ( ( b `
 k )  x.  ( w ^ k
) ) )
3736sumeq2sdv 13770 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( w ^ k ) ) )
38 fveq2 5865 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
b `  k )  =  ( b `  j ) )
3938, 29oveq12d 6308 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( b `  k
)  x.  ( w ^ k ) )  =  ( ( b `
 j )  x.  ( w ^ j
) ) )
4039cbvsumv 13762 . . . . . . . . . 10  |-  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( b `  j
)  x.  ( w ^ j ) )
4137, 40syl6eq 2501 . . . . . . . . 9  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4241cbvmptv 4495 . . . . . . . 8  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4335, 42syl6eq 2501 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( b `  j
)  x.  ( w ^ j ) ) ) )
4417, 18, 19, 20, 21, 22, 23, 34, 43coeeulem 23178 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  a  =  b )
45443expia 1210 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )
)  ->  ( (
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  b ) )
4645rexlimdvva 2886 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  -> 
( E. n  e. 
NN0  E. m  e.  NN0  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  b ) )
4716, 46syl5bir 222 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  -> 
( ( E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. m  e.  NN0  (
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  b ) )
4847ralrimivva 2809 . 2  |-  ( F  e.  (Poly `  S
)  ->  A. a  e.  ( CC  ^m  NN0 ) A. b  e.  ( CC  ^m  NN0 )
( ( E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. m  e.  NN0  (
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  b ) )
49 imaeq1 5163 . . . . . . 7  |-  ( a  =  b  ->  (
a " ( ZZ>= `  ( n  +  1
) ) )  =  ( b " ( ZZ>=
`  ( n  + 
1 ) ) ) )
5049eqeq1d 2453 . . . . . 6  |-  ( a  =  b  ->  (
( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  <-> 
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 } ) )
51 fveq1 5864 . . . . . . . . . 10  |-  ( a  =  b  ->  (
a `  k )  =  ( b `  k ) )
5251oveq1d 6305 . . . . . . . . 9  |-  ( a  =  b  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( b `
 k )  x.  ( z ^ k
) ) )
5352sumeq2sdv 13770 . . . . . . . 8  |-  ( a  =  b  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) )
5453mpteq2dv 4490 . . . . . . 7  |-  ( a  =  b  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) ) ) )
5554eqeq2d 2461 . . . . . 6  |-  ( a  =  b  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  <->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )
5650, 55anbi12d 717 . . . . 5  |-  ( a  =  b  ->  (
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  ( (
b " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
5756rexbidv 2901 . . . 4  |-  ( a  =  b  ->  ( E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  E. n  e.  NN0  ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
58 oveq1 6297 . . . . . . . . 9  |-  ( n  =  m  ->  (
n  +  1 )  =  ( m  + 
1 ) )
5958fveq2d 5869 . . . . . . . 8  |-  ( n  =  m  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( m  +  1 ) ) )
6059imaeq2d 5168 . . . . . . 7  |-  ( n  =  m  ->  (
b " ( ZZ>= `  ( n  +  1
) ) )  =  ( b " ( ZZ>=
`  ( m  + 
1 ) ) ) )
6160eqeq1d 2453 . . . . . 6  |-  ( n  =  m  ->  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  <-> 
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 } ) )
62 oveq2 6298 . . . . . . . . 9  |-  ( n  =  m  ->  (
0 ... n )  =  ( 0 ... m
) )
6362sumeq1d 13767 . . . . . . . 8  |-  ( n  =  m  ->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) )
6463mpteq2dv 4490 . . . . . . 7  |-  ( n  =  m  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( z ^ k
) ) ) )
6564eqeq2d 2461 . . . . . 6  |-  ( n  =  m  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) )  <->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )
6661, 65anbi12d 717 . . . . 5  |-  ( n  =  m  ->  (
( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )  <->  ( (
b " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
6766cbvrexv 3020 . . . 4  |-  ( E. n  e.  NN0  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )  <->  E. m  e.  NN0  ( ( b
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )
6857, 67syl6bb 265 . . 3  |-  ( a  =  b  ->  ( E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  E. m  e.  NN0  ( ( b
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
6968reu4 3232 . 2  |-  ( E! a  e.  ( CC 
^m  NN0 ) E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  <->  ( E. a  e.  ( CC  ^m 
NN0 ) E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  A. a  e.  ( CC 
^m  NN0 ) A. b  e.  ( CC  ^m  NN0 ) ( ( E. n  e.  NN0  (
( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  E. m  e.  NN0  ( ( b " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  a  =  b ) ) )
7015, 48, 69sylanbrc 670 1  |-  ( F  e.  (Poly `  S
)  ->  E! a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738   E!wreu 2739    u. cun 3402    C_ wss 3404   {csn 3968    |-> cmpt 4461   "cima 4837   ` cfv 5582  (class class class)co 6290    ^m cmap 7472   CCcc 9537   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544   NN0cn0 10869   ZZ>=cuz 11159   ...cfz 11784   ^cexp 12272   sum_csu 13752  Polycply 23138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-rlim 13553  df-sum 13753  df-0p 22628  df-ply 23142
This theorem is referenced by:  coelem  23180  coeeq  23181
  Copyright terms: Public domain W3C validator