MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq Structured version   Unicode version

Theorem coeeq 21638
Description: If  A satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
coeeq.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
coeeq.2  |-  ( ph  ->  N  e.  NN0 )
coeeq.3  |-  ( ph  ->  A : NN0 --> CC )
coeeq.4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
coeeq.5  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
coeeq  |-  ( ph  ->  (coeff `  F )  =  A )
Distinct variable groups:    z, k, A    k, N, z
Allowed substitution hints:    ph( z, k)    S( z, k)    F( z, k)

Proof of Theorem coeeq
Dummy variables  a  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeeq.1 . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 coeval 21634 . . 3  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
)  =  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
31, 2syl 16 . 2  |-  ( ph  ->  (coeff `  F )  =  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) ) )
4 coeeq.2 . . . 4  |-  ( ph  ->  N  e.  NN0 )
5 coeeq.4 . . . 4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
6 coeeq.5 . . . 4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
7 oveq1 6097 . . . . . . . . 9  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
87fveq2d 5692 . . . . . . . 8  |-  ( n  =  N  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( N  +  1 ) ) )
98imaeq2d 5166 . . . . . . 7  |-  ( n  =  N  ->  ( A " ( ZZ>= `  (
n  +  1 ) ) )  =  ( A " ( ZZ>= `  ( N  +  1
) ) ) )
109eqeq1d 2449 . . . . . 6  |-  ( n  =  N  ->  (
( A " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  <-> 
( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } ) )
11 oveq2 6098 . . . . . . . . 9  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
1211sumeq1d 13174 . . . . . . . 8  |-  ( n  =  N  ->  sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )
1312mpteq2dv 4376 . . . . . . 7  |-  ( n  =  N  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
1413eqeq2d 2452 . . . . . 6  |-  ( n  =  N  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  (
z ^ k ) ) )  <->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) ) )
1510, 14anbi12d 705 . . . . 5  |-  ( n  =  N  ->  (
( ( A "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )  <->  ( ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) ) ) ) )
1615rspcev 3070 . . . 4  |-  ( ( N  e.  NN0  /\  ( ( A "
( ZZ>= `  ( N  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) ) )  ->  E. n  e.  NN0  ( ( A "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( z ^ k ) ) ) ) )
174, 5, 6, 16syl12anc 1211 . . 3  |-  ( ph  ->  E. n  e.  NN0  ( ( A "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( z ^ k ) ) ) ) )
18 coeeq.3 . . . . 5  |-  ( ph  ->  A : NN0 --> CC )
19 cnex 9359 . . . . . 6  |-  CC  e.  _V
20 nn0ex 10581 . . . . . 6  |-  NN0  e.  _V
2119, 20elmap 7237 . . . . 5  |-  ( A  e.  ( CC  ^m  NN0 )  <->  A : NN0 --> CC )
2218, 21sylibr 212 . . . 4  |-  ( ph  ->  A  e.  ( CC 
^m  NN0 ) )
23 coeeu 21636 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  E! a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
241, 23syl 16 . . . 4  |-  ( ph  ->  E! a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
25 imaeq1 5161 . . . . . . . 8  |-  ( a  =  A  ->  (
a " ( ZZ>= `  ( n  +  1
) ) )  =  ( A " ( ZZ>=
`  ( n  + 
1 ) ) ) )
2625eqeq1d 2449 . . . . . . 7  |-  ( a  =  A  ->  (
( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  <-> 
( A " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 } ) )
27 fveq1 5687 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a `  k )  =  ( A `  k ) )
2827oveq1d 6105 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( z ^ k
) ) )
2928sumeq2sdv 13177 . . . . . . . . 9  |-  ( a  =  A  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( z ^ k ) ) )
3029mpteq2dv 4376 . . . . . . . 8  |-  ( a  =  A  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
3130eqeq2d 2452 . . . . . . 7  |-  ( a  =  A  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  <->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( z ^ k ) ) ) ) )
3226, 31anbi12d 705 . . . . . 6  |-  ( a  =  A  ->  (
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  ( ( A " ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  (
z ^ k ) ) ) ) ) )
3332rexbidv 2734 . . . . 5  |-  ( a  =  A  ->  ( E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  E. n  e.  NN0  ( ( A
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  (
z ^ k ) ) ) ) ) )
3433riota2 6073 . . . 4  |-  ( ( A  e.  ( CC 
^m  NN0 )  /\  E! a  e.  ( CC  ^m 
NN0 ) E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( E. n  e.  NN0  ( ( A
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  (
z ^ k ) ) ) )  <->  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  =  A ) )
3522, 24, 34syl2anc 656 . . 3  |-  ( ph  ->  ( E. n  e. 
NN0  ( ( A
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  (
z ^ k ) ) ) )  <->  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  =  A ) )
3617, 35mpbid 210 . 2  |-  ( ph  ->  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  =  A )
373, 36eqtrd 2473 1  |-  ( ph  ->  (coeff `  F )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   E.wrex 2714   E!wreu 2715   {csn 3874    e. cmpt 4347   "cima 4839   -->wf 5411   ` cfv 5415   iota_crio 6048  (class class class)co 6090    ^m cmap 7210   CCcc 9276   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283   NN0cn0 10575   ZZ>=cuz 10857   ...cfz 11433   ^cexp 11861   sum_csu 13159  Polycply 21595  coeffccoe 21597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-rlim 12963  df-sum 13160  df-0p 21048  df-ply 21599  df-coe 21601
This theorem is referenced by:  dgrlem  21640  coeidlem  21648  coeeq2  21653  dgreq  21655  coeaddlem  21659  coemullem  21660  coe1termlem  21668  coecj  21688  basellem2  22362
  Copyright terms: Public domain W3C validator