MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeaddlem Structured version   Unicode version

Theorem coeaddlem 22380
Description: Lemma for coeadd 22382 and dgradd 22398. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1  |-  A  =  (coeff `  F )
coeadd.2  |-  B  =  (coeff `  G )
coeadd.3  |-  M  =  (deg `  F )
coeadd.4  |-  N  =  (deg `  G )
Assertion
Ref Expression
coeaddlem  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  oF  +  G ) )  =  ( A  oF  +  B )  /\  (deg `  ( F  oF  +  G
) )  <_  if ( M  <_  N ,  N ,  M )
) )

Proof of Theorem coeaddlem
Dummy variables  k  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyaddcl 22352 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( F  oF  +  G
)  e.  (Poly `  CC ) )
2 coeadd.4 . . . . . 6  |-  N  =  (deg `  G )
3 dgrcl 22365 . . . . . 6  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
42, 3syl5eqel 2559 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  N  e.  NN0 )
54adantl 466 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  NN0 )
6 coeadd.3 . . . . . 6  |-  M  =  (deg `  F )
7 dgrcl 22365 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
86, 7syl5eqel 2559 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  M  e.  NN0 )
98adantr 465 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  NN0 )
10 ifcl 3981 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  ->  if ( M  <_  N ,  N ,  M )  e.  NN0 )
115, 9, 10syl2anc 661 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  if ( M  <_  N ,  N ,  M )  e.  NN0 )
12 addcl 9570 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
1312adantl 466 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
14 coefv0.1 . . . . . 6  |-  A  =  (coeff `  F )
1514coef3 22364 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
1615adantr 465 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  A : NN0
--> CC )
17 coeadd.2 . . . . . 6  |-  B  =  (coeff `  G )
1817coef3 22364 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  B : NN0
--> CC )
1918adantl 466 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  B : NN0
--> CC )
20 nn0ex 10797 . . . . 5  |-  NN0  e.  _V
2120a1i 11 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  NN0  e.  _V )
22 inidm 3707 . . . 4  |-  ( NN0 
i^i  NN0 )  =  NN0
2313, 16, 19, 21, 21, 22off 6536 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( A  oF  +  B
) : NN0 --> CC )
24 oveq12 6291 . . . . . . . . . 10  |-  ( ( ( A `  k
)  =  0  /\  ( B `  k
)  =  0 )  ->  ( ( A `
 k )  +  ( B `  k
) )  =  ( 0  +  0 ) )
25 00id 9750 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
2624, 25syl6eq 2524 . . . . . . . . 9  |-  ( ( ( A `  k
)  =  0  /\  ( B `  k
)  =  0 )  ->  ( ( A `
 k )  +  ( B `  k
) )  =  0 )
27 ffn 5729 . . . . . . . . . . . 12  |-  ( A : NN0 --> CC  ->  A  Fn  NN0 )
2816, 27syl 16 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  A  Fn  NN0 )
29 ffn 5729 . . . . . . . . . . . 12  |-  ( B : NN0 --> CC  ->  B  Fn  NN0 )
3019, 29syl 16 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  B  Fn  NN0 )
31 eqidd 2468 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( A `  k )  =  ( A `  k ) )
32 eqidd 2468 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( B `  k )  =  ( B `  k ) )
3328, 30, 21, 21, 22, 31, 32ofval 6531 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( ( A  oF  +  B
) `  k )  =  ( ( A `
 k )  +  ( B `  k
) ) )
3433eqeq1d 2469 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( (
( A  oF  +  B ) `  k )  =  0  <-> 
( ( A `  k )  +  ( B `  k ) )  =  0 ) )
3526, 34syl5ibr 221 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( (
( A `  k
)  =  0  /\  ( B `  k
)  =  0 )  ->  ( ( A  oF  +  B
) `  k )  =  0 ) )
3635necon3ad 2677 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( (
( A  oF  +  B ) `  k )  =/=  0  ->  -.  ( ( A `
 k )  =  0  /\  ( B `
 k )  =  0 ) ) )
37 neorian 2794 . . . . . . 7  |-  ( ( ( A `  k
)  =/=  0  \/  ( B `  k
)  =/=  0 )  <->  -.  ( ( A `  k )  =  0  /\  ( B `  k )  =  0 ) )
3836, 37syl6ibr 227 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( (
( A  oF  +  B ) `  k )  =/=  0  ->  ( ( A `  k )  =/=  0  \/  ( B `  k
)  =/=  0 ) ) )
3914, 6dgrub2 22367 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  ( A " ( ZZ>= `  ( M  +  1 ) ) )  =  { 0 } )
4039adantr 465 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( A " ( ZZ>= `  ( M  +  1 ) ) )  =  { 0 } )
41 plyco0 22324 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( M  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  M ) ) )
429, 16, 41syl2anc 661 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A " ( ZZ>= `  ( M  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  M ) ) )
4340, 42mpbid 210 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  M ) )
4443r19.21bi 2833 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( ( A `  k )  =/=  0  ->  k  <_  M ) )
459adantr 465 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  M  e.  NN0 )
4645nn0red 10849 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  M  e.  RR )
475adantr 465 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  N  e.  NN0 )
4847nn0red 10849 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  N  e.  RR )
49 max1 11382 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
5046, 48, 49syl2anc 661 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
51 nn0re 10800 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  k  e.  RR )
5251adantl 466 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  k  e.  RR )
5311adantr 465 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  if ( M  <_  N ,  N ,  M )  e.  NN0 )
5453nn0red 10849 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  if ( M  <_  N ,  N ,  M )  e.  RR )
55 letr 9674 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  M  e.  RR  /\  if ( M  <_  N ,  N ,  M )  e.  RR )  ->  (
( k  <_  M  /\  M  <_  if ( M  <_  N ,  N ,  M )
)  ->  k  <_  if ( M  <_  N ,  N ,  M ) ) )
5652, 46, 54, 55syl3anc 1228 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( (
k  <_  M  /\  M  <_  if ( M  <_  N ,  N ,  M ) )  -> 
k  <_  if ( M  <_  N ,  N ,  M ) ) )
5750, 56mpan2d 674 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( k  <_  M  ->  k  <_  if ( M  <_  N ,  N ,  M ) ) )
5844, 57syld 44 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( ( A `  k )  =/=  0  ->  k  <_  if ( M  <_  N ,  N ,  M ) ) )
5917, 2dgrub2 22367 . . . . . . . . . . 11  |-  ( G  e.  (Poly `  S
)  ->  ( B " ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )
6059adantl 466 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( B " ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )
61 plyco0 22324 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  B : NN0 --> CC )  ->  ( ( B
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( B `
 k )  =/=  0  ->  k  <_  N ) ) )
625, 19, 61syl2anc 661 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( B " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( B `
 k )  =/=  0  ->  k  <_  N ) ) )
6360, 62mpbid 210 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  A. k  e.  NN0  ( ( B `
 k )  =/=  0  ->  k  <_  N ) )
6463r19.21bi 2833 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( ( B `  k )  =/=  0  ->  k  <_  N ) )
65 max2 11384 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
6646, 48, 65syl2anc 661 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
67 letr 9674 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  N  e.  RR  /\  if ( M  <_  N ,  N ,  M )  e.  RR )  ->  (
( k  <_  N  /\  N  <_  if ( M  <_  N ,  N ,  M )
)  ->  k  <_  if ( M  <_  N ,  N ,  M ) ) )
6852, 48, 54, 67syl3anc 1228 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( (
k  <_  N  /\  N  <_  if ( M  <_  N ,  N ,  M ) )  -> 
k  <_  if ( M  <_  N ,  N ,  M ) ) )
6966, 68mpan2d 674 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( k  <_  N  ->  k  <_  if ( M  <_  N ,  N ,  M ) ) )
7064, 69syld 44 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( ( B `  k )  =/=  0  ->  k  <_  if ( M  <_  N ,  N ,  M ) ) )
7158, 70jaod 380 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( (
( A `  k
)  =/=  0  \/  ( B `  k
)  =/=  0 )  ->  k  <_  if ( M  <_  N ,  N ,  M )
) )
7238, 71syld 44 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  NN0 )  ->  ( (
( A  oF  +  B ) `  k )  =/=  0  ->  k  <_  if ( M  <_  N ,  N ,  M ) ) )
7372ralrimiva 2878 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  A. k  e.  NN0  ( ( ( A  oF  +  B ) `  k
)  =/=  0  -> 
k  <_  if ( M  <_  N ,  N ,  M ) ) )
74 plyco0 22324 . . . . 5  |-  ( ( if ( M  <_  N ,  N ,  M )  e.  NN0  /\  ( A  oF  +  B ) : NN0 --> CC )  -> 
( ( ( A  oF  +  B
) " ( ZZ>= `  ( if ( M  <_  N ,  N ,  M )  +  1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( ( A  oF  +  B ) `  k
)  =/=  0  -> 
k  <_  if ( M  <_  N ,  N ,  M ) ) ) )
7511, 23, 74syl2anc 661 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (
( A  oF  +  B ) "
( ZZ>= `  ( if ( M  <_  N ,  N ,  M )  +  1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( ( A  oF  +  B
) `  k )  =/=  0  ->  k  <_  if ( M  <_  N ,  N ,  M ) ) ) )
7673, 75mpbird 232 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A  oF  +  B
) " ( ZZ>= `  ( if ( M  <_  N ,  N ,  M )  +  1 ) ) )  =  { 0 } )
77 simpl 457 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  F  e.  (Poly `  S ) )
78 simpr 461 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  G  e.  (Poly `  S ) )
7914, 6coeid 22370 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
8079adantr 465 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
8117, 2coeid 22370 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
8281adantl 466 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
8377, 78, 9, 5, 16, 19, 40, 60, 80, 82plyaddlem1 22345 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( F  oF  +  G
)  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  oF  +  B ) `  k
)  x.  ( z ^ k ) ) ) )
841, 11, 23, 76, 83coeeq 22359 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  (coeff `  ( F  oF  +  G
) )  =  ( A  oF  +  B ) )
85 elfznn0 11766 . . . 4  |-  ( k  e.  ( 0 ...
if ( M  <_  N ,  N ,  M ) )  -> 
k  e.  NN0 )
86 ffvelrn 6017 . . . 4  |-  ( ( ( A  oF  +  B ) : NN0 --> CC  /\  k  e.  NN0 )  ->  (
( A  oF  +  B ) `  k )  e.  CC )
8723, 85, 86syl2an 477 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( A  oF  +  B ) `  k )  e.  CC )
881, 11, 87, 83dgrle 22375 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  (deg `  ( F  oF  +  G
) )  <_  if ( M  <_  N ,  N ,  M )
)
8984, 88jca 532 1  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  oF  +  G ) )  =  ( A  oF  +  B )  /\  (deg `  ( F  oF  +  G
) )  <_  if ( M  <_  N ,  N ,  M )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113   ifcif 3939   {csn 4027   class class class wbr 4447    |-> cmpt 4505   "cima 5002    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282    oFcof 6520   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    <_ cle 9625   NN0cn0 10791   ZZ>=cuz 11078   ...cfz 11668   ^cexp 12130   sum_csu 13467  Polycply 22316  coeffccoe 22318  degcdgr 22319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-rlim 13271  df-sum 13468  df-0p 21812  df-ply 22320  df-coe 22322  df-dgr 22323
This theorem is referenced by:  coeadd  22382  dgradd  22398
  Copyright terms: Public domain W3C validator