MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1z Structured version   Unicode version

Theorem coe1z 18855
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1z.p  |-  P  =  (Poly1 `  R )
coe1z.z  |-  .0.  =  ( 0g `  P )
coe1z.y  |-  Y  =  ( 0g `  R
)
Assertion
Ref Expression
coe1z  |-  ( R  e.  Ring  ->  (coe1 `  .0.  )  =  ( NN0  X. 
{ Y } ) )

Proof of Theorem coe1z
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 5789 . . . . 5  |-  ( a  e.  NN0  ->  ( 1o 
X.  { a } ) : 1o --> NN0 )
21adantl 467 . . . 4  |-  ( ( R  e.  Ring  /\  a  e.  NN0 )  ->  ( 1o  X.  { a } ) : 1o --> NN0 )
3 nn0ex 10882 . . . . 5  |-  NN0  e.  _V
4 1on 7200 . . . . . 6  |-  1o  e.  On
54elexi 3090 . . . . 5  |-  1o  e.  _V
63, 5elmap 7511 . . . 4  |-  ( ( 1o  X.  { a } )  e.  ( NN0  ^m  1o )  <-> 
( 1o  X.  {
a } ) : 1o --> NN0 )
72, 6sylibr 215 . . 3  |-  ( ( R  e.  Ring  /\  a  e.  NN0 )  ->  ( 1o  X.  { a } )  e.  ( NN0 
^m  1o ) )
8 eqidd 2423 . . 3  |-  ( R  e.  Ring  ->  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) )  =  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) )
9 eqid 2422 . . . . 5  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
10 psr1baslem 18777 . . . . 5  |-  ( NN0 
^m  1o )  =  { c  e.  ( NN0  ^m  1o )  |  ( `' c
" NN )  e. 
Fin }
11 coe1z.y . . . . 5  |-  Y  =  ( 0g `  R
)
12 coe1z.p . . . . . 6  |-  P  =  (Poly1 `  R )
13 coe1z.z . . . . . 6  |-  .0.  =  ( 0g `  P )
149, 12, 13ply1mpl0 18847 . . . . 5  |-  .0.  =  ( 0g `  ( 1o mPoly  R ) )
154a1i 11 . . . . 5  |-  ( R  e.  Ring  ->  1o  e.  On )
16 ringgrp 17784 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Grp )
179, 10, 11, 14, 15, 16mpl0 18664 . . . 4  |-  ( R  e.  Ring  ->  .0.  =  ( ( NN0  ^m  1o )  X.  { Y } ) )
18 fconstmpt 4897 . . . 4  |-  ( ( NN0  ^m  1o )  X.  { Y }
)  =  ( b  e.  ( NN0  ^m  1o )  |->  Y )
1917, 18syl6eq 2479 . . 3  |-  ( R  e.  Ring  ->  .0.  =  ( b  e.  ( NN0  ^m  1o ) 
|->  Y ) )
20 eqidd 2423 . . 3  |-  ( b  =  ( 1o  X.  { a } )  ->  Y  =  Y )
217, 8, 19, 20fmptco 6071 . 2  |-  ( R  e.  Ring  ->  (  .0. 
o.  ( a  e. 
NN0  |->  ( 1o  X.  { a } ) ) )  =  ( a  e.  NN0  |->  Y ) )
2212ply1ring 18840 . . 3  |-  ( R  e.  Ring  ->  P  e. 
Ring )
23 eqid 2422 . . . 4  |-  ( Base `  P )  =  (
Base `  P )
2423, 13ring0cl 17801 . . 3  |-  ( P  e.  Ring  ->  .0.  e.  ( Base `  P )
)
25 eqid 2422 . . . 4  |-  (coe1 `  .0.  )  =  (coe1 `  .0.  )
26 eqid 2422 . . . 4  |-  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) )  =  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) )
2725, 23, 12, 26coe1fval2 18802 . . 3  |-  (  .0. 
e.  ( Base `  P
)  ->  (coe1 `  .0.  )  =  (  .0.  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) )
2822, 24, 273syl 18 . 2  |-  ( R  e.  Ring  ->  (coe1 `  .0.  )  =  (  .0.  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) )
29 fconstmpt 4897 . . 3  |-  ( NN0 
X.  { Y }
)  =  ( a  e.  NN0  |->  Y )
3029a1i 11 . 2  |-  ( R  e.  Ring  ->  ( NN0 
X.  { Y }
)  =  ( a  e.  NN0  |->  Y ) )
3121, 28, 303eqtr4d 2473 1  |-  ( R  e.  Ring  ->  (coe1 `  .0.  )  =  ( NN0  X. 
{ Y } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   {csn 3998    |-> cmpt 4482    X. cxp 4851    o. ccom 4857   Oncon0 5442   -->wf 5597   ` cfv 5601  (class class class)co 6305   1oc1o 7186    ^m cmap 7483   NN0cn0 10876   Basecbs 15120   0gc0g 15337   Ringcrg 17779   mPoly cmpl 18576  Poly1cpl1 18769  coe1cco1 18770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-map 7485  df-pm 7486  df-ixp 7534  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fsupp 7893  df-oi 8034  df-card 8381  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-fzo 11923  df-seq 12220  df-hash 12522  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-sca 15205  df-vsca 15206  df-tset 15208  df-ple 15209  df-0g 15339  df-gsum 15340  df-mre 15491  df-mrc 15492  df-acs 15494  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-mhm 16581  df-submnd 16582  df-grp 16672  df-minusg 16673  df-mulg 16675  df-subg 16813  df-ghm 16880  df-cntz 16970  df-cmn 17431  df-abl 17432  df-mgp 17723  df-ur 17735  df-ring 17781  df-subrg 18005  df-psr 18579  df-mpl 18581  df-opsr 18583  df-psr1 18772  df-ply1 18774  df-coe1 18775
This theorem is referenced by:  coe1fzgsumd  18895  decpmatid  19792  pmatcollpwscmatlem1  19811  fta1blem  23117  hbtlem2  35953
  Copyright terms: Public domain W3C validator