MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul Structured version   Unicode version

Theorem coe1tmmul 18513
Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z  |-  .0.  =  ( 0g `  R )
coe1tm.k  |-  K  =  ( Base `  R
)
coe1tm.p  |-  P  =  (Poly1 `  R )
coe1tm.x  |-  X  =  (var1 `  R )
coe1tm.m  |-  .x.  =  ( .s `  P )
coe1tm.n  |-  N  =  (mulGrp `  P )
coe1tm.e  |-  .^  =  (.g
`  N )
coe1tmmul.b  |-  B  =  ( Base `  P
)
coe1tmmul.t  |-  .xb  =  ( .r `  P )
coe1tmmul.u  |-  .X.  =  ( .r `  R )
coe1tmmul.a  |-  ( ph  ->  A  e.  B )
coe1tmmul.r  |-  ( ph  ->  R  e.  Ring )
coe1tmmul.c  |-  ( ph  ->  C  e.  K )
coe1tmmul.d  |-  ( ph  ->  D  e.  NN0 )
Assertion
Ref Expression
coe1tmmul  |-  ( ph  ->  (coe1 `  ( ( C 
.x.  ( D  .^  X ) )  .xb  A ) )  =  ( x  e.  NN0  |->  if ( D  <_  x ,  ( C  .X.  ( (coe1 `  A ) `  ( x  -  D
) ) ) ,  .0.  ) ) )
Distinct variable groups:    x,  .0.    x, C    x, D    x, K    x,  .^    x, A    x, N    x, P    x, X    ph, x    x, R    x,  .x.    x,  .X.    x,  .xb
Allowed substitution hint:    B( x)

Proof of Theorem coe1tmmul
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3  |-  ( ph  ->  R  e.  Ring )
2 coe1tmmul.c . . . 4  |-  ( ph  ->  C  e.  K )
3 coe1tmmul.d . . . 4  |-  ( ph  ->  D  e.  NN0 )
4 coe1tm.k . . . . 5  |-  K  =  ( Base `  R
)
5 coe1tm.p . . . . 5  |-  P  =  (Poly1 `  R )
6 coe1tm.x . . . . 5  |-  X  =  (var1 `  R )
7 coe1tm.m . . . . 5  |-  .x.  =  ( .s `  P )
8 coe1tm.n . . . . 5  |-  N  =  (mulGrp `  P )
9 coe1tm.e . . . . 5  |-  .^  =  (.g
`  N )
10 coe1tmmul.b . . . . 5  |-  B  =  ( Base `  P
)
114, 5, 6, 7, 8, 9, 10ply1tmcl 18508 . . . 4  |-  ( ( R  e.  Ring  /\  C  e.  K  /\  D  e. 
NN0 )  ->  ( C  .x.  ( D  .^  X ) )  e.  B )
121, 2, 3, 11syl3anc 1226 . . 3  |-  ( ph  ->  ( C  .x.  ( D  .^  X ) )  e.  B )
13 coe1tmmul.a . . 3  |-  ( ph  ->  A  e.  B )
14 coe1tmmul.t . . . 4  |-  .xb  =  ( .r `  P )
15 coe1tmmul.u . . . 4  |-  .X.  =  ( .r `  R )
165, 14, 15, 10coe1mul 18506 . . 3  |-  ( ( R  e.  Ring  /\  ( C  .x.  ( D  .^  X ) )  e.  B  /\  A  e.  B )  ->  (coe1 `  ( ( C  .x.  ( D  .^  X ) )  .xb  A )
)  =  ( x  e.  NN0  |->  ( R 
gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) ) ) )
171, 12, 13, 16syl3anc 1226 . 2  |-  ( ph  ->  (coe1 `  ( ( C 
.x.  ( D  .^  X ) )  .xb  A ) )  =  ( x  e.  NN0  |->  ( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) ) ) )
18 eqeq2 2469 . . . 4  |-  ( ( C  .X.  ( (coe1 `  A ) `  (
x  -  D ) ) )  =  if ( D  <_  x ,  ( C  .X.  ( (coe1 `  A ) `  ( x  -  D
) ) ) ,  .0.  )  ->  (
( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) )  =  ( C 
.X.  ( (coe1 `  A
) `  ( x  -  D ) ) )  <-> 
( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) )  =  if ( D  <_  x , 
( C  .X.  (
(coe1 `  A ) `  ( x  -  D
) ) ) ,  .0.  ) ) )
19 eqeq2 2469 . . . 4  |-  (  .0.  =  if ( D  <_  x ,  ( C  .X.  ( (coe1 `  A ) `  (
x  -  D ) ) ) ,  .0.  )  ->  ( ( R 
gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) )  =  .0.  <->  ( R  gsumg  ( y  e.  ( 0 ... x )  |->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) ) ) )  =  if ( D  <_  x ,  ( C  .X.  ( (coe1 `  A ) `  (
x  -  D ) ) ) ,  .0.  ) ) )
20 coe1tm.z . . . . . 6  |-  .0.  =  ( 0g `  R )
211ad2antrr 723 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  R  e.  Ring )
22 ringmnd 17402 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
2321, 22syl 16 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  R  e.  Mnd )
24 ovex 6298 . . . . . . 7  |-  ( 0 ... x )  e. 
_V
2524a1i 11 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  (
0 ... x )  e. 
_V )
263ad2antrr 723 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  D  e.  NN0 )
27 simpr 459 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  D  <_  x )
28 fznn0 11774 . . . . . . . 8  |-  ( x  e.  NN0  ->  ( D  e.  ( 0 ... x )  <->  ( D  e.  NN0  /\  D  <_  x ) ) )
2928ad2antlr 724 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  ( D  e.  ( 0 ... x )  <->  ( D  e.  NN0  /\  D  <_  x ) ) )
3026, 27, 29mpbir2and 920 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  D  e.  ( 0 ... x
) )
311ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x
) )  ->  R  e.  Ring )
32 eqid 2454 . . . . . . . . . . . . 13  |-  (coe1 `  ( C  .x.  ( D  .^  X ) ) )  =  (coe1 `  ( C  .x.  ( D  .^  X ) ) )
3332, 10, 5, 4coe1f 18445 . . . . . . . . . . . 12  |-  ( ( C  .x.  ( D 
.^  X ) )  e.  B  ->  (coe1 `  ( C  .x.  ( D 
.^  X ) ) ) : NN0 --> K )
3412, 33syl 16 . . . . . . . . . . 11  |-  ( ph  ->  (coe1 `  ( C  .x.  ( D  .^  X ) ) ) : NN0 --> K )
3534adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  NN0 )  ->  (coe1 `  ( C  .x.  ( D  .^  X ) ) ) : NN0 --> K )
36 elfznn0 11775 . . . . . . . . . 10  |-  ( y  e.  ( 0 ... x )  ->  y  e.  NN0 )
37 ffvelrn 6005 . . . . . . . . . 10  |-  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) : NN0 --> K  /\  y  e.  NN0 )  ->  ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  e.  K )
3835, 36, 37syl2an 475 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x
) )  ->  (
(coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  e.  K )
39 eqid 2454 . . . . . . . . . . . . 13  |-  (coe1 `  A
)  =  (coe1 `  A
)
4039, 10, 5, 4coe1f 18445 . . . . . . . . . . . 12  |-  ( A  e.  B  ->  (coe1 `  A ) : NN0 --> K )
4113, 40syl 16 . . . . . . . . . . 11  |-  ( ph  ->  (coe1 `  A ) : NN0 --> K )
4241adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  NN0 )  ->  (coe1 `  A
) : NN0 --> K )
43 fznn0sub 11720 . . . . . . . . . 10  |-  ( y  e.  ( 0 ... x )  ->  (
x  -  y )  e.  NN0 )
44 ffvelrn 6005 . . . . . . . . . 10  |-  ( ( (coe1 `  A ) : NN0 --> K  /\  (
x  -  y )  e.  NN0 )  -> 
( (coe1 `  A ) `  ( x  -  y
) )  e.  K
)
4542, 43, 44syl2an 475 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x
) )  ->  (
(coe1 `  A ) `  ( x  -  y
) )  e.  K
)
464, 15ringcl 17407 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
(coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  e.  K  /\  ( (coe1 `  A ) `  ( x  -  y
) )  e.  K
)  ->  ( (
(coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) )  e.  K
)
4731, 38, 45, 46syl3anc 1226 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x
) )  ->  (
( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) )  e.  K
)
48 eqid 2454 . . . . . . . 8  |-  ( y  e.  ( 0 ... x )  |->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) ) )  =  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) )
4947, 48fmptd 6031 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN0 )  ->  ( y  e.  ( 0 ... x
)  |->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y ) 
.X.  ( (coe1 `  A
) `  ( x  -  y ) ) ) ) : ( 0 ... x ) --> K )
5049adantr 463 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  (
y  e.  ( 0 ... x )  |->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) ) ) : ( 0 ... x
) --> K )
511ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  R  e.  Ring )
522ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  C  e.  K
)
533ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  D  e.  NN0 )
54 eldifi 3612 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 0 ... x )  \  { D } )  -> 
y  e.  ( 0 ... x ) )
5554, 36syl 16 . . . . . . . . . . 11  |-  ( y  e.  ( ( 0 ... x )  \  { D } )  -> 
y  e.  NN0 )
5655adantl 464 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  y  e.  NN0 )
57 eldifsni 4142 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 0 ... x )  \  { D } )  -> 
y  =/=  D )
5857necomd 2725 . . . . . . . . . . 11  |-  ( y  e.  ( ( 0 ... x )  \  { D } )  ->  D  =/=  y )
5958adantl 464 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  D  =/=  y
)
6020, 4, 5, 6, 7, 8, 9, 51, 52, 53, 56, 59coe1tmfv2 18511 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  =  .0.  )
6160oveq1d 6285 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y ) 
.X.  ( (coe1 `  A
) `  ( x  -  y ) ) )  =  (  .0.  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) )
624, 15, 20ringlz 17430 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
(coe1 `  A ) `  ( x  -  y
) )  e.  K
)  ->  (  .0.  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) )  =  .0.  )
6331, 45, 62syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x
) )  ->  (  .0.  .X.  ( (coe1 `  A
) `  ( x  -  y ) ) )  =  .0.  )
6454, 63sylan2 472 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( ( 0 ... x )  \  { D } ) )  -> 
(  .0.  .X.  (
(coe1 `  A ) `  ( x  -  y
) ) )  =  .0.  )
6564adantlr 712 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  (  .0.  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) )  =  .0.  )
6661, 65eqtrd 2495 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  /\  y  e.  ( (
0 ... x )  \  { D } ) )  ->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y ) 
.X.  ( (coe1 `  A
) `  ( x  -  y ) ) )  =  .0.  )
6766, 25suppss2 6926 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  (
( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) supp 
.0.  )  C_  { D } )
684, 20, 23, 25, 30, 50, 67gsumpt 17184 . . . . 5  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  ( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) )  =  ( ( y  e.  ( 0 ... x )  |->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) ) ) `  D ) )
69 fveq2 5848 . . . . . . . . 9  |-  ( y  =  D  ->  (
(coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  =  ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  D ) )
70 oveq2 6278 . . . . . . . . . 10  |-  ( y  =  D  ->  (
x  -  y )  =  ( x  -  D ) )
7170fveq2d 5852 . . . . . . . . 9  |-  ( y  =  D  ->  (
(coe1 `  A ) `  ( x  -  y
) )  =  ( (coe1 `  A ) `  ( x  -  D
) ) )
7269, 71oveq12d 6288 . . . . . . . 8  |-  ( y  =  D  ->  (
( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) )  =  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  D
)  .X.  ( (coe1 `  A ) `  (
x  -  D ) ) ) )
73 ovex 6298 . . . . . . . 8  |-  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  D
)  .X.  ( (coe1 `  A ) `  (
x  -  D ) ) )  e.  _V
7472, 48, 73fvmpt 5931 . . . . . . 7  |-  ( D  e.  ( 0 ... x )  ->  (
( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) `
 D )  =  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 D )  .X.  ( (coe1 `  A ) `  ( x  -  D
) ) ) )
7530, 74syl 16 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  (
( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) `
 D )  =  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 D )  .X.  ( (coe1 `  A ) `  ( x  -  D
) ) ) )
7620, 4, 5, 6, 7, 8, 9coe1tmfv1 18510 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  C  e.  K  /\  D  e. 
NN0 )  ->  (
(coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  D
)  =  C )
771, 2, 3, 76syl3anc 1226 . . . . . . . 8  |-  ( ph  ->  ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  D
)  =  C )
7877ad2antrr 723 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  (
(coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  D
)  =  C )
7978oveq1d 6285 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  (
( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  D
)  .X.  ( (coe1 `  A ) `  (
x  -  D ) ) )  =  ( C  .X.  ( (coe1 `  A ) `  (
x  -  D ) ) ) )
8075, 79eqtrd 2495 . . . . 5  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  (
( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) `
 D )  =  ( C  .X.  (
(coe1 `  A ) `  ( x  -  D
) ) ) )
8168, 80eqtrd 2495 . . . 4  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  D  <_  x )  ->  ( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) )  =  ( C 
.X.  ( (coe1 `  A
) `  ( x  -  D ) ) ) )
821ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  R  e.  Ring )
832ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  C  e.  K )
843ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  D  e.  NN0 )
8536adantl 464 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  y  e.  NN0 )
86 elfzle2 11693 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( 0 ... x )  ->  y  <_  x )
8786adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x
) )  ->  y  <_  x )
88 breq1 4442 . . . . . . . . . . . . . 14  |-  ( D  =  y  ->  ( D  <_  x  <->  y  <_  x ) )
8987, 88syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x
) )  ->  ( D  =  y  ->  D  <_  x ) )
9089necon3bd 2666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x
) )  ->  ( -.  D  <_  x  ->  D  =/=  y ) )
9190imp 427 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  y  e.  ( 0 ... x ) )  /\  -.  D  <_  x )  ->  D  =/=  y )
9291an32s 802 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  D  =/=  y )
9320, 4, 5, 6, 7, 8, 9, 82, 83, 84, 85, 92coe1tmfv2 18511 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  ( (coe1 `  ( C  .x.  ( D 
.^  X ) ) ) `  y )  =  .0.  )
9493oveq1d 6285 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  ( (
(coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) )  =  (  .0.  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) ) )
9563adantlr 712 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  (  .0.  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) )  =  .0.  )
9694, 95eqtrd 2495 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  /\  y  e.  ( 0 ... x ) )  ->  ( (
(coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) )  =  .0.  )
9796mpteq2dva 4525 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  -> 
( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) )  =  ( y  e.  ( 0 ... x
)  |->  .0.  ) )
9897oveq2d 6286 . . . . 5  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  -> 
( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) )  =  ( R 
gsumg  ( y  e.  ( 0 ... x ) 
|->  .0.  ) ) )
991, 22syl 16 . . . . . . 7  |-  ( ph  ->  R  e.  Mnd )
10099ad2antrr 723 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  ->  R  e.  Mnd )
10124a1i 11 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  -> 
( 0 ... x
)  e.  _V )
10220gsumz 16204 . . . . . 6  |-  ( ( R  e.  Mnd  /\  ( 0 ... x
)  e.  _V )  ->  ( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  .0.  ) )  =  .0.  )
103100, 101, 102syl2anc 659 . . . . 5  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  -> 
( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  .0.  ) )  =  .0.  )
10498, 103eqtrd 2495 . . . 4  |-  ( ( ( ph  /\  x  e.  NN0 )  /\  -.  D  <_  x )  -> 
( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) )  =  .0.  )
10518, 19, 81, 104ifbothda 3964 . . 3  |-  ( (
ph  /\  x  e.  NN0 )  ->  ( R  gsumg  ( y  e.  ( 0 ... x )  |->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `  y
)  .X.  ( (coe1 `  A ) `  (
x  -  y ) ) ) ) )  =  if ( D  <_  x ,  ( C  .X.  ( (coe1 `  A ) `  (
x  -  D ) ) ) ,  .0.  ) )
106105mpteq2dva 4525 . 2  |-  ( ph  ->  ( x  e.  NN0  |->  ( R  gsumg  ( y  e.  ( 0 ... x ) 
|->  ( ( (coe1 `  ( C  .x.  ( D  .^  X ) ) ) `
 y )  .X.  ( (coe1 `  A ) `  ( x  -  y
) ) ) ) ) )  =  ( x  e.  NN0  |->  if ( D  <_  x , 
( C  .X.  (
(coe1 `  A ) `  ( x  -  D
) ) ) ,  .0.  ) ) )
10717, 106eqtrd 2495 1  |-  ( ph  ->  (coe1 `  ( ( C 
.x.  ( D  .^  X ) )  .xb  A ) )  =  ( x  e.  NN0  |->  if ( D  <_  x ,  ( C  .X.  ( (coe1 `  A ) `  ( x  -  D
) ) ) ,  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   _Vcvv 3106    \ cdif 3458   ifcif 3929   {csn 4016   class class class wbr 4439    |-> cmpt 4497   -->wf 5566   ` cfv 5570  (class class class)co 6270   0cc0 9481    <_ cle 9618    - cmin 9796   NN0cn0 10791   ...cfz 11675   Basecbs 14716   .rcmulr 14785   .scvsca 14788   0gc0g 14929    gsumg cgsu 14930   Mndcmnd 16118  .gcmg 16255  mulGrpcmgp 17336   Ringcrg 17393  var1cv1 18410  Poly1cpl1 18411  coe1cco1 18412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-ofr 6514  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-tset 14803  df-ple 14804  df-0g 14931  df-gsum 14932  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-mulg 16259  df-subg 16397  df-ghm 16464  df-cntz 16554  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-subrg 17622  df-lmod 17709  df-lss 17774  df-psr 18200  df-mvr 18201  df-mpl 18202  df-opsr 18204  df-psr1 18414  df-vr1 18415  df-ply1 18416  df-coe1 18417
This theorem is referenced by:  coe1pwmul  18515  coe1sclmul  18518
  Copyright terms: Public domain W3C validator