MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1term Structured version   Unicode version

Theorem coe1term 22383
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
coe1term.1  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
Assertion
Ref Expression
coe1term  |-  ( ( A  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
(coeff `  F ) `  M )  =  if ( M  =  N ,  A ,  0 ) )
Distinct variable groups:    z, A    z, N
Allowed substitution hints:    F( z)    M( z)

Proof of Theorem coe1term
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 coe1term.1 . . . . . 6  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
21coe1termlem 22382 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( (coeff `  F
)  =  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )  /\  ( A  =/=  0  ->  (deg `  F )  =  N ) ) )
32simpld 459 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
(coeff `  F )  =  ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) )
43fveq1d 5859 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( (coeff `  F
) `  M )  =  ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  M ) )
543adant3 1011 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
(coeff `  F ) `  M )  =  ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  M
) )
6 simp3 993 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  M  e.  NN0 )
7 simp1 991 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  A  e.  CC )
8 0cn 9577 . . . 4  |-  0  e.  CC
9 ifcl 3974 . . . 4  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  if ( M  =  N ,  A , 
0 )  e.  CC )
107, 8, 9sylancl 662 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  if ( M  =  N ,  A ,  0 )  e.  CC )
11 eqeq1 2464 . . . . 5  |-  ( n  =  M  ->  (
n  =  N  <->  M  =  N ) )
1211ifbid 3954 . . . 4  |-  ( n  =  M  ->  if ( n  =  N ,  A ,  0 )  =  if ( M  =  N ,  A ,  0 ) )
13 eqid 2460 . . . 4  |-  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )  =  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )
1412, 13fvmptg 5939 . . 3  |-  ( ( M  e.  NN0  /\  if ( M  =  N ,  A ,  0 )  e.  CC )  ->  ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  M )  =  if ( M  =  N ,  A ,  0 ) )
156, 10, 14syl2anc 661 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  M
)  =  if ( M  =  N ,  A ,  0 ) )
165, 15eqtrd 2501 1  |-  ( ( A  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
(coeff `  F ) `  M )  =  if ( M  =  N ,  A ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   ifcif 3932    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   CCcc 9479   0cc0 9481    x. cmul 9486   NN0cn0 10784   ^cexp 12122  coeffccoe 22311  degcdgr 22312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-fz 11662  df-fzo 11782  df-fl 11886  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-rlim 13261  df-sum 13458  df-0p 21805  df-ply 22313  df-coe 22315  df-dgr 22316
This theorem is referenced by:  coeidp  22387  dgrcolem2  22398  plydivlem4  22419
  Copyright terms: Public domain W3C validator