MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fval2 Structured version   Unicode version

Theorem coe1fval2 17565
Description: Univariate polynomial coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
coe1fval.a  |-  A  =  (coe1 `  F )
coe1f.b  |-  B  =  ( Base `  P
)
coe1f.p  |-  P  =  (Poly1 `  R )
coe1fval2.g  |-  G  =  ( y  e.  NN0  |->  ( 1o  X.  { y } ) )
Assertion
Ref Expression
coe1fval2  |-  ( F  e.  B  ->  A  =  ( F  o.  G ) )
Distinct variable group:    y, F
Allowed substitution hints:    A( y)    B( y)    P( y)    R( y)    G( y)

Proof of Theorem coe1fval2
StepHypRef Expression
1 coe1f.p . . 3  |-  P  =  (Poly1 `  R )
2 coe1f.b . . 3  |-  B  =  ( Base `  P
)
31, 2ply1bascl 17558 . 2  |-  ( F  e.  B  ->  F  e.  ( Base `  (PwSer1 `  R ) ) )
4 coe1fval.a . . 3  |-  A  =  (coe1 `  F )
5 eqid 2433 . . 3  |-  ( Base `  (PwSer1 `  R ) )  =  ( Base `  (PwSer1 `  R ) )
6 eqid 2433 . . 3  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
7 coe1fval2.g . . 3  |-  G  =  ( y  e.  NN0  |->  ( 1o  X.  { y } ) )
84, 5, 6, 7coe1fval3 17563 . 2  |-  ( F  e.  ( Base `  (PwSer1 `  R ) )  ->  A  =  ( F  o.  G ) )
93, 8syl 16 1  |-  ( F  e.  B  ->  A  =  ( F  o.  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1362    e. wcel 1755   {csn 3865    e. cmpt 4338    X. cxp 4825    o. ccom 4831   ` cfv 5406   1oc1o 6901   NN0cn0 10567   Basecbs 14157  PwSer1cps1 17526  Poly1cpl1 17528  coe1cco1 17531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-tset 14240  df-ple 14241  df-psr 17351  df-opsr 17359  df-psr1 17533  df-ply1 17535  df-coe1 17538
This theorem is referenced by:  coe1sfi  17567  coe1sfiOLD  17568  coe1z  17615  coe1add  17616  coe1tm  17624  deg1val  21452  deg1valOLD  21453
  Copyright terms: Public domain W3C validator