MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coapm Structured version   Unicode version

Theorem coapm 15917
Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coapm.o  |-  .x.  =  (compa `  C )
coapm.a  |-  A  =  (Nat `  C )
Assertion
Ref Expression
coapm  |-  .x.  e.  ( A  ^pm  ( A  X.  A ) )

Proof of Theorem coapm
Dummy variables  f 
g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coapm.o . . . . . 6  |-  .x.  =  (compa `  C )
2 coapm.a . . . . . 6  |-  A  =  (Nat `  C )
3 eqid 2429 . . . . . 6  |-  (comp `  C )  =  (comp `  C )
41, 2, 3coafval 15910 . . . . 5  |-  .x.  =  ( g  e.  A ,  f  e.  { h  e.  A  |  (coda `  h
)  =  (domA `  g ) }  |->  <. (domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  C ) (coda `  g
) ) ( 2nd `  f ) ) >.
)
54mpt2fun 6412 . . . 4  |-  Fun  .x.
6 funfn 5630 . . . 4  |-  ( Fun 
.x. 
<-> 
.x.  Fn  dom  .x.  )
75, 6mpbi 211 . . 3  |-  .x.  Fn  dom  .x.
81, 2dmcoass 15912 . . . . . . . . 9  |-  dom  .x.  C_  ( A  X.  A
)
98sseli 3466 . . . . . . . 8  |-  ( z  e.  dom  .x.  ->  z  e.  ( A  X.  A ) )
10 1st2nd2 6844 . . . . . . . 8  |-  ( z  e.  ( A  X.  A )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
119, 10syl 17 . . . . . . 7  |-  ( z  e.  dom  .x.  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
1211fveq2d 5885 . . . . . 6  |-  ( z  e.  dom  .x.  ->  ( 
.x.  `  z )  =  (  .x.  `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
13 df-ov 6308 . . . . . 6  |-  ( ( 1st `  z ) 
.x.  ( 2nd `  z
) )  =  ( 
.x.  `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
1412, 13syl6eqr 2488 . . . . 5  |-  ( z  e.  dom  .x.  ->  ( 
.x.  `  z )  =  ( ( 1st `  z )  .x.  ( 2nd `  z ) ) )
15 eqid 2429 . . . . . . 7  |-  (Homa `  C
)  =  (Homa `  C
)
162, 15homarw 15892 . . . . . 6  |-  ( (domA `  ( 2nd `  z ) ) (Homa
`  C ) (coda `  ( 1st `  z ) ) )  C_  A
17 id 23 . . . . . . . . . . . . 13  |-  ( z  e.  dom  .x.  ->  z  e.  dom  .x.  )
1811, 17eqeltrrd 2518 . . . . . . . . . . . 12  |-  ( z  e.  dom  .x.  ->  <.
( 1st `  z
) ,  ( 2nd `  z ) >.  e.  dom  .x.  )
19 df-br 4427 . . . . . . . . . . . 12  |-  ( ( 1st `  z ) dom  .x.  ( 2nd `  z )  <->  <. ( 1st `  z ) ,  ( 2nd `  z )
>.  e.  dom  .x.  )
2018, 19sylibr 215 . . . . . . . . . . 11  |-  ( z  e.  dom  .x.  ->  ( 1st `  z ) dom  .x.  ( 2nd `  z ) )
211, 2eldmcoa 15911 . . . . . . . . . . 11  |-  ( ( 1st `  z ) dom  .x.  ( 2nd `  z )  <->  ( ( 2nd `  z )  e.  A  /\  ( 1st `  z )  e.  A  /\  (coda
`  ( 2nd `  z
) )  =  (domA `  ( 1st `  z ) ) ) )
2220, 21sylib 199 . . . . . . . . . 10  |-  ( z  e.  dom  .x.  ->  ( ( 2nd `  z
)  e.  A  /\  ( 1st `  z )  e.  A  /\  (coda `  ( 2nd `  z ) )  =  (domA `  ( 1st `  z
) ) ) )
2322simp1d 1017 . . . . . . . . 9  |-  ( z  e.  dom  .x.  ->  ( 2nd `  z )  e.  A )
242, 15arwhoma 15891 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  A  ->  ( 2nd `  z )  e.  ( (domA `  ( 2nd `  z
) ) (Homa `  C
) (coda
`  ( 2nd `  z
) ) ) )
2523, 24syl 17 . . . . . . . 8  |-  ( z  e.  dom  .x.  ->  ( 2nd `  z )  e.  ( (domA `  ( 2nd `  z ) ) (Homa `  C ) (coda `  ( 2nd `  z ) ) ) )
2622simp3d 1019 . . . . . . . . 9  |-  ( z  e.  dom  .x.  ->  (coda `  ( 2nd `  z ) )  =  (domA `  ( 1st `  z ) ) )
2726oveq2d 6321 . . . . . . . 8  |-  ( z  e.  dom  .x.  ->  ( (domA `  ( 2nd `  z ) ) (Homa
`  C ) (coda `  ( 2nd `  z ) ) )  =  ( (domA `  ( 2nd `  z ) ) (Homa
`  C ) (domA `  ( 1st `  z ) ) ) )
2825, 27eleqtrd 2519 . . . . . . 7  |-  ( z  e.  dom  .x.  ->  ( 2nd `  z )  e.  ( (domA `  ( 2nd `  z ) ) (Homa `  C ) (domA `  ( 1st `  z ) ) ) )
2922simp2d 1018 . . . . . . . 8  |-  ( z  e.  dom  .x.  ->  ( 1st `  z )  e.  A )
302, 15arwhoma 15891 . . . . . . . 8  |-  ( ( 1st `  z )  e.  A  ->  ( 1st `  z )  e.  ( (domA `  ( 1st `  z
) ) (Homa `  C
) (coda
`  ( 1st `  z
) ) ) )
3129, 30syl 17 . . . . . . 7  |-  ( z  e.  dom  .x.  ->  ( 1st `  z )  e.  ( (domA `  ( 1st `  z ) ) (Homa `  C ) (coda `  ( 1st `  z ) ) ) )
321, 15, 28, 31coahom 15916 . . . . . 6  |-  ( z  e.  dom  .x.  ->  ( ( 1st `  z
)  .x.  ( 2nd `  z ) )  e.  ( (domA `  ( 2nd `  z
) ) (Homa `  C
) (coda
`  ( 1st `  z
) ) ) )
3316, 32sseldi 3468 . . . . 5  |-  ( z  e.  dom  .x.  ->  ( ( 1st `  z
)  .x.  ( 2nd `  z ) )  e.  A )
3414, 33eqeltrd 2517 . . . 4  |-  ( z  e.  dom  .x.  ->  ( 
.x.  `  z )  e.  A )
3534rgen 2792 . . 3  |-  A. z  e.  dom  .x.  (  .x.  `  z )  e.  A
36 ffnfv 6064 . . 3  |-  (  .x.  : dom  .x.  --> A  <->  (  .x.  Fn  dom  .x.  /\  A. z  e.  dom  .x.  (  .x.  `  z )  e.  A
) )
377, 35, 36mpbir2an 928 . 2  |-  .x.  : dom  .x.  --> A
38 fvex 5891 . . . 4  |-  (Nat `  C )  e.  _V
392, 38eqeltri 2513 . . 3  |-  A  e. 
_V
4039, 39xpex 6609 . . 3  |-  ( A  X.  A )  e. 
_V
4139, 40elpm2 7511 . 2  |-  (  .x.  e.  ( A  ^pm  ( A  X.  A ) )  <-> 
(  .x.  : dom  .x.  --> A  /\  dom  .x.  C_  ( A  X.  A ) ) )
4237, 8, 41mpbir2an 928 1  |-  .x.  e.  ( A  ^pm  ( A  X.  A ) )
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   {crab 2786   _Vcvv 3087    C_ wss 3442   <.cop 4008   <.cotp 4010   class class class wbr 4426    X. cxp 4852   dom cdm 4854   Fun wfun 5595    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   1stc1st 6805   2ndc2nd 6806    ^pm cpm 7481  compcco 15164  domAcdoma 15866  codaccoda 15867  Natcarw 15868  Homachoma 15869  compaccoa 15900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-ot 4011  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-pm 7483  df-cat 15525  df-doma 15870  df-coda 15871  df-homa 15872  df-arw 15873  df-coa 15902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator