MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvxp Structured version   Unicode version

Theorem cnvxp 5250
Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvxp  |-  `' ( A  X.  B )  =  ( B  X.  A )

Proof of Theorem cnvxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 5233 . . 3  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }
2 ancom 450 . . . 4  |-  ( ( y  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  y  e.  A )
)
32opabbii 4351 . . 3  |-  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
41, 3eqtri 2458 . 2  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
5 df-xp 4841 . . 3  |-  ( A  X.  B )  =  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
65cnveqi 5009 . 2  |-  `' ( A  X.  B )  =  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
7 df-xp 4841 . 2  |-  ( B  X.  A )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  A ) }
84, 6, 73eqtr4i 2468 1  |-  `' ( A  X.  B )  =  ( B  X.  A )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369    e. wcel 1756   {copab 4344    X. cxp 4833   `'ccnv 4834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-br 4288  df-opab 4346  df-xp 4841  df-rel 4842  df-cnv 4843
This theorem is referenced by:  xp0  5251  rnxp  5263  rnxpss  5265  dminxp  5273  imainrect  5274  fparlem3  6669  fparlem4  6670  tposfo  6767  tposf  6768  xpider  7163  xpcomf1o  7392  fpwwe2lem13  8801  xpsc  14487  pjdm  18112  tposmap  18322  ordtrest2  18788  ustneism  19778  trust  19784  metustsymOLD  20116  metustsym  20117  metustOLD  20122  metust  20123  gtiso  25964  ordtcnvNEW  26319  ordtrest2NEW  26322  mbfmcst  26643  eulerpartlemt  26723  0rrv  26803  elrn3  27542  xpexb  29681
  Copyright terms: Public domain W3C validator