MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvxp Structured version   Unicode version

Theorem cnvxp 5431
Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvxp  |-  `' ( A  X.  B )  =  ( B  X.  A )

Proof of Theorem cnvxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 5414 . . 3  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }
2 ancom 450 . . . 4  |-  ( ( y  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  y  e.  A )
)
32opabbii 4521 . . 3  |-  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
41, 3eqtri 2486 . 2  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
5 df-xp 5014 . . 3  |-  ( A  X.  B )  =  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
65cnveqi 5187 . 2  |-  `' ( A  X.  B )  =  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
7 df-xp 5014 . 2  |-  ( B  X.  A )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  A ) }
84, 6, 73eqtr4i 2496 1  |-  `' ( A  X.  B )  =  ( B  X.  A )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1395    e. wcel 1819   {copab 4514    X. cxp 5006   `'ccnv 5007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-br 4457  df-opab 4516  df-xp 5014  df-rel 5015  df-cnv 5016
This theorem is referenced by:  xp0  5432  rnxp  5444  rnxpss  5446  dminxp  5454  imainrect  5455  fparlem3  6901  fparlem4  6902  tposfo  7000  tposf  7001  xpider  7400  xpcomf1o  7625  fpwwe2lem13  9037  xpsc  14973  pjdm  18864  tposmap  19085  ordtrest2  19831  ustneism  20851  trust  20857  metustsymOLD  21189  metustsym  21190  metustOLD  21195  metust  21196  gtiso  27667  ordtcnvNEW  28055  ordtrest2NEW  28058  mbfmcst  28391  eulerpartlemt  28485  0rrv  28565  msrf  29077  mthmpps  29117  elrn3  29367  xpexb  31525  trclubg  37886
  Copyright terms: Public domain W3C validator