MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvuni Structured version   Visualization version   Unicode version

Theorem cnvuni 5040
Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
cnvuni  |-  `' U. A  =  U_ x  e.  A  `' x
Distinct variable group:    x, A

Proof of Theorem cnvuni
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 5031 . . . 4  |-  ( y  e.  `' U. A  <->  E. z E. w ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  U. A ) )
2 eluni2 4216 . . . . . . 7  |-  ( <.
w ,  z >.  e.  U. A  <->  E. x  e.  A  <. w ,  z >.  e.  x
)
32anbi2i 705 . . . . . 6  |-  ( ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  U. A )  <->  ( y  =  <. z ,  w >.  /\  E. x  e.  A  <. w ,  z
>.  e.  x ) )
4 r19.42v 2957 . . . . . 6  |-  ( E. x  e.  A  ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
)  <->  ( y  = 
<. z ,  w >.  /\ 
E. x  e.  A  <. w ,  z >.  e.  x ) )
53, 4bitr4i 260 . . . . 5  |-  ( ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  U. A )  <->  E. x  e.  A  ( y  =  <. z ,  w >.  /\  <. w ,  z
>.  e.  x ) )
652exbii 1730 . . . 4  |-  ( E. z E. w ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  U. A )  <->  E. z E. w E. x  e.  A  ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x ) )
7 elcnv2 5031 . . . . . 6  |-  ( y  e.  `' x  <->  E. z E. w ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x ) )
87rexbii 2901 . . . . 5  |-  ( E. x  e.  A  y  e.  `' x  <->  E. x  e.  A  E. z E. w ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x ) )
9 rexcom4 3079 . . . . 5  |-  ( E. x  e.  A  E. z E. w ( y  =  <. z ,  w >.  /\  <. w ,  z
>.  e.  x )  <->  E. z E. x  e.  A  E. w ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x ) )
10 rexcom4 3079 . . . . . 6  |-  ( E. x  e.  A  E. w ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x )  <->  E. w E. x  e.  A  ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
) )
1110exbii 1729 . . . . 5  |-  ( E. z E. x  e.  A  E. w ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
)  <->  E. z E. w E. x  e.  A  ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
) )
128, 9, 113bitrri 280 . . . 4  |-  ( E. z E. w E. x  e.  A  (
y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
)  <->  E. x  e.  A  y  e.  `' x
)
131, 6, 123bitri 279 . . 3  |-  ( y  e.  `' U. A  <->  E. x  e.  A  y  e.  `' x )
14 eliun 4297 . . 3  |-  ( y  e.  U_ x  e.  A  `' x  <->  E. x  e.  A  y  e.  `' x )
1513, 14bitr4i 260 . 2  |-  ( y  e.  `' U. A  <->  y  e.  U_ x  e.  A  `' x )
1615eqriv 2459 1  |-  `' U. A  =  U_ x  e.  A  `' x
Colors of variables: wff setvar class
Syntax hints:    /\ wa 375    = wceq 1455   E.wex 1674    e. wcel 1898   E.wrex 2750   <.cop 3986   U.cuni 4212   U_ciun 4292   `'ccnv 4852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pr 4653
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-v 3059  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-cnv 4861
This theorem is referenced by:  funcnvuni  6773
  Copyright terms: Public domain W3C validator