MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsym Structured version   Unicode version

Theorem cnvsym 5379
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvsym  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
Distinct variable group:    x, y, R

Proof of Theorem cnvsym
StepHypRef Expression
1 alcom 1794 . 2  |-  ( A. y A. x ( <.
y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R
)  <->  A. x A. y
( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
2 relcnv 5372 . . 3  |-  Rel  `' R
3 ssrel 5089 . . 3  |-  ( Rel  `' R  ->  ( `' R  C_  R  <->  A. y A. x ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) ) )
42, 3ax-mp 5 . 2  |-  ( `' R  C_  R  <->  A. y A. x ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
5 vex 3116 . . . . . 6  |-  y  e. 
_V
6 vex 3116 . . . . . 6  |-  x  e. 
_V
75, 6brcnv 5183 . . . . 5  |-  ( y `' R x  <->  x R
y )
8 df-br 4448 . . . . 5  |-  ( y `' R x  <->  <. y ,  x >.  e.  `' R )
97, 8bitr3i 251 . . . 4  |-  ( x R y  <->  <. y ,  x >.  e.  `' R )
10 df-br 4448 . . . 4  |-  ( y R x  <->  <. y ,  x >.  e.  R
)
119, 10imbi12i 326 . . 3  |-  ( ( x R y  -> 
y R x )  <-> 
( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
12112albii 1621 . 2  |-  ( A. x A. y ( x R y  ->  y R x )  <->  A. x A. y ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
131, 4, 123bitr4i 277 1  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1377    e. wcel 1767    C_ wss 3476   <.cop 4033   class class class wbr 4447   `'ccnv 4998   Rel wrel 5004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-cnv 5007
This theorem is referenced by:  dfer2  7309
  Copyright terms: Public domain W3C validator