Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvssrndm Structured version   Unicode version

Theorem cnvssrndm 5529
 Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
cnvssrndm

Proof of Theorem cnvssrndm
StepHypRef Expression
1 relcnv 5374 . . 3
2 relssdmrn 5528 . . 3
31, 2ax-mp 5 . 2
4 df-rn 5010 . . 3
5 dfdm4 5195 . . 3
64, 5xpeq12i 5021 . 2
73, 6sseqtr4i 3537 1
 Colors of variables: wff setvar class Syntax hints:   wss 3476   cxp 4997  ccnv 4998   cdm 4999   crn 5000   wrel 5004 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-cnv 5007  df-dm 5009  df-rn 5010 This theorem is referenced by:  wuncnv  9109  fcnvgreu  27283
 Copyright terms: Public domain W3C validator