MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsn Structured version   Unicode version

Theorem cnvsn 5399
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
cnvsn  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }

Proof of Theorem cnvsn
StepHypRef Expression
1 cnvcnvsn 5393 . 2  |-  `' `' { <. B ,  A >. }  =  `' { <. A ,  B >. }
2 cnvsn.2 . . . 4  |-  B  e. 
_V
3 cnvsn.1 . . . 4  |-  A  e. 
_V
42, 3relsnop 5020 . . 3  |-  Rel  { <. B ,  A >. }
5 dfrel2 5366 . . 3  |-  ( Rel 
{ <. B ,  A >. }  <->  `' `' { <. B ,  A >. }  =  { <. B ,  A >. } )
64, 5mpbi 208 . 2  |-  `' `' { <. B ,  A >. }  =  { <. B ,  A >. }
71, 6eqtr3i 2413 1  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1399    e. wcel 1826   _Vcvv 3034   {csn 3944   <.cop 3950   `'ccnv 4912   Rel wrel 4918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pr 4601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-br 4368  df-opab 4426  df-xp 4919  df-rel 4920  df-cnv 4921
This theorem is referenced by:  op2ndb  5400  cnvsng  5402  f1osn  5761  1sdom  7639  ex-cnv  25279
  Copyright terms: Public domain W3C validator