MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresima Structured version   Unicode version

Theorem cnvresima 5496
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
Assertion
Ref Expression
cnvresima  |-  ( `' ( F  |`  A )
" B )  =  ( ( `' F " B )  i^i  A
)

Proof of Theorem cnvresima
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3116 . . . 4  |-  t  e. 
_V
21elima3 5344 . . 3  |-  ( t  e.  ( `' ( F  |`  A ) " B )  <->  E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' ( F  |`  A ) ) )
31elima3 5344 . . . . 5  |-  ( t  e.  ( `' F " B )  <->  E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F ) )
43anbi1i 695 . . . 4  |-  ( ( t  e.  ( `' F " B )  /\  t  e.  A
)  <->  ( E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
) )
5 elin 3687 . . . 4  |-  ( t  e.  ( ( `' F " B )  i^i  A )  <->  ( t  e.  ( `' F " B )  /\  t  e.  A ) )
6 vex 3116 . . . . . . . . . 10  |-  s  e. 
_V
76, 1opelcnv 5184 . . . . . . . . 9  |-  ( <.
s ,  t >.  e.  `' ( F  |`  A )  <->  <. t ,  s >.  e.  ( F  |`  A ) )
86opelres 5279 . . . . . . . . . 10  |-  ( <.
t ,  s >.  e.  ( F  |`  A )  <-> 
( <. t ,  s
>.  e.  F  /\  t  e.  A ) )
96, 1opelcnv 5184 . . . . . . . . . . 11  |-  ( <.
s ,  t >.  e.  `' F  <->  <. t ,  s
>.  e.  F )
109anbi1i 695 . . . . . . . . . 10  |-  ( (
<. s ,  t >.  e.  `' F  /\  t  e.  A )  <->  ( <. t ,  s >.  e.  F  /\  t  e.  A
) )
118, 10bitr4i 252 . . . . . . . . 9  |-  ( <.
t ,  s >.  e.  ( F  |`  A )  <-> 
( <. s ,  t
>.  e.  `' F  /\  t  e.  A )
)
127, 11bitri 249 . . . . . . . 8  |-  ( <.
s ,  t >.  e.  `' ( F  |`  A )  <->  ( <. s ,  t >.  e.  `' F  /\  t  e.  A
) )
1312anbi2i 694 . . . . . . 7  |-  ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( s  e.  B  /\  ( <. s ,  t >.  e.  `' F  /\  t  e.  A ) ) )
14 anass 649 . . . . . . 7  |-  ( ( ( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
)  <->  ( s  e.  B  /\  ( <.
s ,  t >.  e.  `' F  /\  t  e.  A ) ) )
1513, 14bitr4i 252 . . . . . 6  |-  ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( (
s  e.  B  /\  <.
s ,  t >.  e.  `' F )  /\  t  e.  A ) )
1615exbii 1644 . . . . 5  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  E. s ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' F )  /\  t  e.  A ) )
17 19.41v 1945 . . . . 5  |-  ( E. s ( ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A )  <->  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A ) )
1816, 17bitri 249 . . . 4  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
) )
194, 5, 183bitr4ri 278 . . 3  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  t  e.  ( ( `' F " B )  i^i  A
) )
202, 19bitri 249 . 2  |-  ( t  e.  ( `' ( F  |`  A ) " B )  <->  t  e.  ( ( `' F " B )  i^i  A
) )
2120eqriv 2463 1  |-  ( `' ( F  |`  A )
" B )  =  ( ( `' F " B )  i^i  A
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    i^i cin 3475   <.cop 4033   `'ccnv 4998    |` cres 5001   "cima 5002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-cnv 5007  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012
This theorem is referenced by:  ramub2  14391  ramub1lem2  14404  cnrest  19580  kgencn  19820  kgencn3  19822  xkoptsub  19918  qtopres  19962  qtoprest  19981  mbfid  21806  mbfres  21814  fimacnvinrn  27176  1stpreima  27224  2ndpreima  27225  cvmsss2  28387  lmhmlnmsplit  30665
  Copyright terms: Public domain W3C validator