MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvpo Structured version   Unicode version

Theorem cnvpo 5528
Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvpo  |-  ( R  Po  A  <->  `' R  Po  A )

Proof of Theorem cnvpo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2981 . . . . . . 7  |-  ( A. x  e.  A  ( A. z  e.  A  -.  x R x  /\  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  ( A. x  e.  A  A. z  e.  A  -.  x R x  /\  A. x  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
2 ralidm 3921 . . . . . . . . 9  |-  ( A. x  e.  A  A. x  e.  A  -.  x R x  <->  A. x  e.  A  -.  x R x )
3 rzal 3919 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  A. x  e.  A  -.  x R x )
4 rzal 3919 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  A. x  e.  A  A. z  e.  A  -.  x R x )
53, 42thd 240 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A. x  e.  A  -.  x R x  <->  A. x  e.  A  A. z  e.  A  -.  x R x ) )
6 r19.3rzv 3910 . . . . . . . . . . 11  |-  ( A  =/=  (/)  ->  ( -.  x R x  <->  A. z  e.  A  -.  x R x ) )
76ralbidv 2893 . . . . . . . . . 10  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  -.  x R x  <->  A. x  e.  A  A. z  e.  A  -.  x R x ) )
85, 7pm2.61ine 2767 . . . . . . . . 9  |-  ( A. x  e.  A  -.  x R x  <->  A. x  e.  A  A. z  e.  A  -.  x R x )
92, 8bitr2i 250 . . . . . . . 8  |-  ( A. x  e.  A  A. z  e.  A  -.  x R x  <->  A. x  e.  A  A. x  e.  A  -.  x R x )
109anbi1i 693 . . . . . . 7  |-  ( ( A. x  e.  A  A. z  e.  A  -.  x R x  /\  A. x  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) )  <->  ( A. x  e.  A  A. x  e.  A  -.  x R x  /\  A. x  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
111, 10bitri 249 . . . . . 6  |-  ( A. x  e.  A  ( A. z  e.  A  -.  x R x  /\  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  ( A. x  e.  A  A. x  e.  A  -.  x R x  /\  A. x  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
12 r19.26 2981 . . . . . . 7  |-  ( A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. z  e.  A  -.  x R x  /\  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
1312ralbii 2885 . . . . . 6  |-  ( A. x  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x  e.  A  ( A. z  e.  A  -.  x R x  /\  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R
z ) ) )
14 r19.26 2981 . . . . . 6  |-  ( A. x  e.  A  ( A. x  e.  A  -.  x R x  /\  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  ( A. x  e.  A  A. x  e.  A  -.  x R x  /\  A. x  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
1511, 13, 143bitr4i 277 . . . . 5  |-  ( A. x  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x  e.  A  ( A. x  e.  A  -.  x R x  /\  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R
z ) ) )
16 r19.26 2981 . . . . . . . 8  |-  ( A. z  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R x )  -> 
z `' R x ) )  <->  ( A. z  e.  A  -.  z `' R z  /\  A. z  e.  A  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
17 vex 3109 . . . . . . . . . . . . 13  |-  z  e. 
_V
1817, 17brcnv 5174 . . . . . . . . . . . 12  |-  ( z `' R z  <->  z R
z )
19 id 22 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  z  =  x )
2019, 19breq12d 4452 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
z R z  <->  x R x ) )
2118, 20syl5bb 257 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
z `' R z  <-> 
x R x ) )
2221notbid 292 . . . . . . . . . 10  |-  ( z  =  x  ->  ( -.  z `' R z  <->  -.  x R x ) )
2322cbvralv 3081 . . . . . . . . 9  |-  ( A. z  e.  A  -.  z `' R z  <->  A. x  e.  A  -.  x R x )
24 vex 3109 . . . . . . . . . . . . 13  |-  y  e. 
_V
2517, 24brcnv 5174 . . . . . . . . . . . 12  |-  ( z `' R y  <->  y R
z )
26 vex 3109 . . . . . . . . . . . . 13  |-  x  e. 
_V
2724, 26brcnv 5174 . . . . . . . . . . . 12  |-  ( y `' R x  <->  x R
y )
2825, 27anbi12ci 696 . . . . . . . . . . 11  |-  ( ( z `' R y  /\  y `' R x )  <->  ( x R y  /\  y R z ) )
2917, 26brcnv 5174 . . . . . . . . . . 11  |-  ( z `' R x  <->  x R
z )
3028, 29imbi12i 324 . . . . . . . . . 10  |-  ( ( ( z `' R
y  /\  y `' R x )  -> 
z `' R x )  <->  ( ( x R y  /\  y R z )  ->  x R z ) )
3130ralbii 2885 . . . . . . . . 9  |-  ( A. z  e.  A  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x )  <->  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z ) )
3223, 31anbi12i 695 . . . . . . . 8  |-  ( ( A. z  e.  A  -.  z `' R z  /\  A. z  e.  A  ( ( z `' R y  /\  y `' R x )  -> 
z `' R x ) )  <->  ( A. x  e.  A  -.  x R x  /\  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
3316, 32bitr2i 250 . . . . . . 7  |-  ( ( A. x  e.  A  -.  x R x  /\  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  A. z  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
3433ralbii 2885 . . . . . 6  |-  ( A. x  e.  A  ( A. x  e.  A  -.  x R x  /\  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x  e.  A  A. z  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
35 ralcom 3015 . . . . . 6  |-  ( A. x  e.  A  A. z  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R x )  -> 
z `' R x ) )  <->  A. z  e.  A  A. x  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
3634, 35bitri 249 . . . . 5  |-  ( A. x  e.  A  ( A. x  e.  A  -.  x R x  /\  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  A. z  e.  A  A. x  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
3715, 36bitri 249 . . . 4  |-  ( A. x  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. z  e.  A  A. x  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
3837ralbii 2885 . . 3  |-  ( A. y  e.  A  A. x  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y  e.  A  A. z  e.  A  A. x  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
39 ralcom 3015 . . 3  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
40 ralcom 3015 . . 3  |-  ( A. z  e.  A  A. y  e.  A  A. x  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R x )  -> 
z `' R x ) )  <->  A. y  e.  A  A. z  e.  A  A. x  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
4138, 39, 403bitr4i 277 . 2  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. z  e.  A  A. y  e.  A  A. x  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
42 df-po 4789 . 2  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
43 df-po 4789 . 2  |-  ( `' R  Po  A  <->  A. z  e.  A  A. y  e.  A  A. x  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R x )  -> 
z `' R x ) ) )
4441, 42, 433bitr4i 277 1  |-  ( R  Po  A  <->  `' R  Po  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    =/= wne 2649   A.wral 2804   (/)c0 3783   class class class wbr 4439    Po wpo 4787   `'ccnv 4987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-po 4789  df-cnv 4996
This theorem is referenced by:  cnvso  5529  fimax2g  7758  fin23lem40  8722  isfin1-3  8757
  Copyright terms: Public domain W3C validator