MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvdif Structured version   Unicode version

Theorem cnvdif 5412
Description: Distributive law for converse over set difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvdif  |-  `' ( A  \  B )  =  ( `' A  \  `' B )

Proof of Theorem cnvdif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5374 . 2  |-  Rel  `' ( A  \  B )
2 difss 3631 . . 3  |-  ( `' A  \  `' B
)  C_  `' A
3 relcnv 5374 . . 3  |-  Rel  `' A
4 relss 5090 . . 3  |-  ( ( `' A  \  `' B
)  C_  `' A  ->  ( Rel  `' A  ->  Rel  ( `' A  \  `' B ) ) )
52, 3, 4mp2 9 . 2  |-  Rel  ( `' A  \  `' B
)
6 eldif 3486 . . 3  |-  ( <.
y ,  x >.  e.  ( A  \  B
)  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
7 vex 3116 . . . 4  |-  x  e. 
_V
8 vex 3116 . . . 4  |-  y  e. 
_V
97, 8opelcnv 5184 . . 3  |-  ( <.
x ,  y >.  e.  `' ( A  \  B )  <->  <. y ,  x >.  e.  ( A  \  B ) )
10 eldif 3486 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' A  \  `' B )  <->  ( <. x ,  y >.  e.  `' A  /\  -.  <. x ,  y >.  e.  `' B ) )
117, 8opelcnv 5184 . . . . 5  |-  ( <.
x ,  y >.  e.  `' A  <->  <. y ,  x >.  e.  A )
127, 8opelcnv 5184 . . . . . 6  |-  ( <.
x ,  y >.  e.  `' B  <->  <. y ,  x >.  e.  B )
1312notbii 296 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  `' B  <->  -.  <. y ,  x >.  e.  B
)
1411, 13anbi12i 697 . . . 4  |-  ( (
<. x ,  y >.  e.  `' A  /\  -.  <. x ,  y >.  e.  `' B )  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
1510, 14bitri 249 . . 3  |-  ( <.
x ,  y >.  e.  ( `' A  \  `' B )  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
166, 9, 153bitr4i 277 . 2  |-  ( <.
x ,  y >.  e.  `' ( A  \  B )  <->  <. x ,  y >.  e.  ( `' A  \  `' B
) )
171, 5, 16eqrelriiv 5097 1  |-  `' ( A  \  B )  =  ( `' A  \  `' B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1379    e. wcel 1767    \ cdif 3473    C_ wss 3476   <.cop 4033   `'ccnv 4998   Rel wrel 5004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-cnv 5007
This theorem is referenced by:  cnvin  5413  gtiso  27288  mthmpps  28693
  Copyright terms: Public domain W3C validator