MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Unicode version

Theorem cnvcnv 5368
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv  |-  `' `' A  =  ( A  i^i  ( _V  X.  _V ) )

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 5287 . . . . 5  |-  Rel  `' `' A
2 df-rel 4920 . . . . 5  |-  ( Rel  `' `' A  <->  `' `' A  C_  ( _V 
X.  _V ) )
31, 2mpbi 208 . . . 4  |-  `' `' A  C_  ( _V  X.  _V )
4 relxp 5023 . . . . 5  |-  Rel  ( _V  X.  _V )
5 dfrel2 5366 . . . . 5  |-  ( Rel  ( _V  X.  _V ) 
<->  `' `' ( _V  X.  _V )  =  ( _V  X.  _V ) )
64, 5mpbi 208 . . . 4  |-  `' `' ( _V  X.  _V )  =  ( _V  X.  _V )
73, 6sseqtr4i 3450 . . 3  |-  `' `' A  C_  `' `' ( _V  X.  _V )
8 dfss 3404 . . 3  |-  ( `' `' A  C_  `' `' ( _V  X.  _V )  <->  `' `' A  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
) )
97, 8mpbi 208 . 2  |-  `' `' A  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
)
10 cnvin 5323 . 2  |-  `' ( `' A  i^i  `' ( _V  X.  _V )
)  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
)
11 cnvin 5323 . . . 4  |-  `' ( A  i^i  ( _V 
X.  _V ) )  =  ( `' A  i^i  `' ( _V  X.  _V ) )
1211cnveqi 5090 . . 3  |-  `' `' ( A  i^i  ( _V  X.  _V ) )  =  `' ( `' A  i^i  `' ( _V  X.  _V )
)
13 inss2 3633 . . . . 5  |-  ( A  i^i  ( _V  X.  _V ) )  C_  ( _V  X.  _V )
14 df-rel 4920 . . . . 5  |-  ( Rel  ( A  i^i  ( _V  X.  _V ) )  <-> 
( A  i^i  ( _V  X.  _V ) ) 
C_  ( _V  X.  _V ) )
1513, 14mpbir 209 . . . 4  |-  Rel  ( A  i^i  ( _V  X.  _V ) )
16 dfrel2 5366 . . . 4  |-  ( Rel  ( A  i^i  ( _V  X.  _V ) )  <->  `' `' ( A  i^i  ( _V  X.  _V )
)  =  ( A  i^i  ( _V  X.  _V ) ) )
1715, 16mpbi 208 . . 3  |-  `' `' ( A  i^i  ( _V  X.  _V ) )  =  ( A  i^i  ( _V  X.  _V )
)
1812, 17eqtr3i 2413 . 2  |-  `' ( `' A  i^i  `' ( _V  X.  _V )
)  =  ( A  i^i  ( _V  X.  _V ) )
199, 10, 183eqtr2i 2417 1  |-  `' `' A  =  ( A  i^i  ( _V  X.  _V ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1399   _Vcvv 3034    i^i cin 3388    C_ wss 3389    X. cxp 4911   `'ccnv 4912   Rel wrel 4918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pr 4601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-br 4368  df-opab 4426  df-xp 4919  df-rel 4920  df-cnv 4921
This theorem is referenced by:  cnvcnv2  5369  cnvcnvss  5370  structcnvcnv  14645  strfv2d  14668
  Copyright terms: Public domain W3C validator