MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubr Structured version   Unicode version

Theorem cntzsubr 17329
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzsubr.b  |-  B  =  ( Base `  R
)
cntzsubr.m  |-  M  =  (mulGrp `  R )
cntzsubr.z  |-  Z  =  (Cntz `  M )
Assertion
Ref Expression
cntzsubr  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)

Proof of Theorem cntzsubr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubr.m . . . . . 6  |-  M  =  (mulGrp `  R )
2 cntzsubr.b . . . . . 6  |-  B  =  ( Base `  R
)
31, 2mgpbas 17015 . . . . 5  |-  B  =  ( Base `  M
)
4 cntzsubr.z . . . . 5  |-  Z  =  (Cntz `  M )
53, 4cntzssv 16235 . . . 4  |-  ( Z `
 S )  C_  B
65a1i 11 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  C_  B )
7 simpll 753 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  R  e.  Ring )
8 ssel2 3481 . . . . . . . . 9  |-  ( ( S  C_  B  /\  z  e.  S )  ->  z  e.  B )
98adantll 713 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  z  e.  B )
10 eqid 2441 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
11 eqid 2441 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
122, 10, 11ringlz 17103 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  z  e.  B )  ->  (
( 0g `  R
) ( .r `  R ) z )  =  ( 0g `  R ) )
137, 9, 12syl2anc 661 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( ( 0g `  R ) ( .r `  R ) z )  =  ( 0g `  R ) )
142, 10, 11ringrz 17104 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  z  e.  B )  ->  (
z ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
157, 9, 14syl2anc 661 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( z
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) )
1613, 15eqtr4d 2485 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) )
1716ralrimiva 2855 . . . . 5  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  A. z  e.  S  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) )
18 simpr 461 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  S  C_  B )
192, 11ring0cl 17088 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
2019adantr 465 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( 0g `  R )  e.  B )
211, 10mgpplusg 17013 . . . . . . 7  |-  ( .r
`  R )  =  ( +g  `  M
)
223, 21, 4cntzel 16230 . . . . . 6  |-  ( ( S  C_  B  /\  ( 0g `  R )  e.  B )  -> 
( ( 0g `  R )  e.  ( Z `  S )  <->  A. z  e.  S  ( ( 0g `  R ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( 0g `  R ) ) ) )
2318, 20, 22syl2anc 661 . . . . 5  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( 0g `  R
)  e.  ( Z `
 S )  <->  A. z  e.  S  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) ) )
2417, 23mpbird 232 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( 0g `  R )  e.  ( Z `  S
) )
25 ne0i 3773 . . . 4  |-  ( ( 0g `  R )  e.  ( Z `  S )  ->  ( Z `  S )  =/=  (/) )
2624, 25syl 16 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  =/=  (/) )
27 simpl2 999 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  ( Z `  S
) )
28 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  S )
2921, 4cntzi 16236 . . . . . . . . . . . 12  |-  ( ( x  e.  ( Z `
 S )  /\  z  e.  S )  ->  ( x ( .r
`  R ) z )  =  ( z ( .r `  R
) x ) )
3027, 28, 29syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
x ( .r `  R ) z )  =  ( z ( .r `  R ) x ) )
31 simpl3 1000 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  y  e.  ( Z `  S
) )
3221, 4cntzi 16236 . . . . . . . . . . . 12  |-  ( ( y  e.  ( Z `
 S )  /\  z  e.  S )  ->  ( y ( .r
`  R ) z )  =  ( z ( .r `  R
) y ) )
3331, 28, 32syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
y ( .r `  R ) z )  =  ( z ( .r `  R ) y ) )
3430, 33oveq12d 6295 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) )  =  ( ( z ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) y ) ) )
35 simpl1l 1046 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  R  e.  Ring )
365, 27sseldi 3484 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  B )
375, 31sseldi 3484 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  y  e.  B )
38 simp1r 1020 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  S  C_  B
)
3938sselda 3486 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  B )
40 eqid 2441 . . . . . . . . . . . 12  |-  ( +g  `  R )  =  ( +g  `  R )
412, 40, 10ringdir 17086 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )
4235, 36, 37, 39, 41syl13anc 1229 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) )
432, 40, 10ringdi 17085 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
z  e.  B  /\  x  e.  B  /\  y  e.  B )
)  ->  ( z
( .r `  R
) ( x ( +g  `  R ) y ) )  =  ( ( z ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) y ) ) )
4435, 39, 36, 37, 43syl13anc 1229 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
z ( .r `  R ) ( x ( +g  `  R
) y ) )  =  ( ( z ( .r `  R
) x ) ( +g  `  R ) ( z ( .r
`  R ) y ) ) )
4534, 42, 443eqtr4d 2492 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( z ( .r
`  R ) ( x ( +g  `  R
) y ) ) )
4645ralrimiva 2855 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  A. z  e.  S  ( (
x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( x ( +g  `  R
) y ) ) )
47 simp1l 1019 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  R  e.  Ring )
48 simp2 996 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  x  e.  ( Z `  S ) )
495, 48sseldi 3484 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  x  e.  B )
50 simp3 997 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  y  e.  ( Z `  S ) )
515, 50sseldi 3484 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  y  e.  B )
522, 40ringacl 17094 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  R
) y )  e.  B )
5347, 49, 51, 52syl3anc 1227 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( x
( +g  `  R ) y )  e.  B
)
543, 21, 4cntzel 16230 . . . . . . . . 9  |-  ( ( S  C_  B  /\  ( x ( +g  `  R ) y )  e.  B )  -> 
( ( x ( +g  `  R ) y )  e.  ( Z `  S )  <->  A. z  e.  S  ( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( x ( +g  `  R ) y ) ) ) )
5538, 53, 54syl2anc 661 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( (
x ( +g  `  R
) y )  e.  ( Z `  S
)  <->  A. z  e.  S  ( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( x ( +g  `  R ) y ) ) ) )
5646, 55mpbird 232 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( x
( +g  `  R ) y )  e.  ( Z `  S ) )
57563expa 1195 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  y  e.  ( Z `  S
) )  ->  (
x ( +g  `  R
) y )  e.  ( Z `  S
) )
5857ralrimiva 2855 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S ) )
5929adantll 713 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
x ( .r `  R ) z )  =  ( z ( .r `  R ) x ) )
6059fveq2d 5856 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( invg `  R ) `  (
x ( .r `  R ) z ) )  =  ( ( invg `  R
) `  ( z
( .r `  R
) x ) ) )
61 eqid 2441 . . . . . . . . 9  |-  ( invg `  R )  =  ( invg `  R )
62 simplll 757 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  R  e.  Ring )
63 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  ( Z `  S
) )
645, 63sseldi 3484 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  B )
65 simplr 754 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  S  C_  B
)
6665sselda 3486 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  B )
672, 10, 61, 62, 64, 66ringmneg1 17110 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( ( invg `  R ) `  x
) ( .r `  R ) z )  =  ( ( invg `  R ) `
 ( x ( .r `  R ) z ) ) )
682, 10, 61, 62, 66, 64ringmneg2 17111 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
z ( .r `  R ) ( ( invg `  R
) `  x )
)  =  ( ( invg `  R
) `  ( z
( .r `  R
) x ) ) )
6960, 67, 683eqtr4d 2492 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( ( invg `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( invg `  R ) `  x
) ) )
7069ralrimiva 2855 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  A. z  e.  S  ( (
( invg `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( invg `  R ) `  x
) ) )
71 ringgrp 17071 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
7271ad2antrr 725 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  R  e.  Grp )
73 simpr 461 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  x  e.  ( Z `  S ) )
745, 73sseldi 3484 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  x  e.  B )
752, 61grpinvcl 15964 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  R ) `  x
)  e.  B )
7672, 74, 75syl2anc 661 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( ( invg `  R ) `
 x )  e.  B )
773, 21, 4cntzel 16230 . . . . . . 7  |-  ( ( S  C_  B  /\  ( ( invg `  R ) `  x
)  e.  B )  ->  ( ( ( invg `  R
) `  x )  e.  ( Z `  S
)  <->  A. z  e.  S  ( ( ( invg `  R ) `
 x ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( invg `  R
) `  x )
) ) )
7865, 76, 77syl2anc 661 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( (
( invg `  R ) `  x
)  e.  ( Z `
 S )  <->  A. z  e.  S  ( (
( invg `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( invg `  R ) `  x
) ) ) )
7970, 78mpbird 232 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( ( invg `  R ) `
 x )  e.  ( Z `  S
) )
8058, 79jca 532 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( A. y  e.  ( Z `  S ) ( x ( +g  `  R
) y )  e.  ( Z `  S
)  /\  ( ( invg `  R ) `
 x )  e.  ( Z `  S
) ) )
8180ralrimiva 2855 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( invg `  R ) `
 x )  e.  ( Z `  S
) ) )
8271adantr 465 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  R  e.  Grp )
832, 40, 61issubg2 16085 . . . 4  |-  ( R  e.  Grp  ->  (
( Z `  S
)  e.  (SubGrp `  R )  <->  ( ( Z `  S )  C_  B  /\  ( Z `
 S )  =/=  (/)  /\  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( invg `  R ) `
 x )  e.  ( Z `  S
) ) ) ) )
8482, 83syl 16 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( Z `  S
)  e.  (SubGrp `  R )  <->  ( ( Z `  S )  C_  B  /\  ( Z `
 S )  =/=  (/)  /\  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( invg `  R ) `
 x )  e.  ( Z `  S
) ) ) ) )
856, 26, 81, 84mpbir3and 1178 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubGrp `  R )
)
861ringmgp 17072 . . 3  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
873, 4cntzsubm 16242 . . 3  |-  ( ( M  e.  Mnd  /\  S  C_  B )  -> 
( Z `  S
)  e.  (SubMnd `  M ) )
8886, 87sylan 471 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubMnd `  M )
)
891issubrg3 17325 . . 3  |-  ( R  e.  Ring  ->  ( ( Z `  S )  e.  (SubRing `  R
)  <->  ( ( Z `
 S )  e.  (SubGrp `  R )  /\  ( Z `  S
)  e.  (SubMnd `  M ) ) ) )
9089adantr 465 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( Z `  S
)  e.  (SubRing `  R
)  <->  ( ( Z `
 S )  e.  (SubGrp `  R )  /\  ( Z `  S
)  e.  (SubMnd `  M ) ) ) )
9185, 88, 90mpbir2and 920 1  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791    C_ wss 3458   (/)c0 3767   ` cfv 5574  (class class class)co 6277   Basecbs 14504   +g cplusg 14569   .rcmulr 14570   0gc0g 14709   Mndcmnd 15788  SubMndcsubmnd 15834   Grpcgrp 15922   invgcminusg 15923  SubGrpcsubg 16064  Cntzccntz 16222  mulGrpcmgp 17009   Ringcrg 17066  SubRingcsubrg 17293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-recs 7040  df-rdg 7074  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-2 10595  df-3 10596  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-0g 14711  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-grp 15926  df-minusg 15927  df-subg 16067  df-cntz 16224  df-mgp 17010  df-ur 17022  df-ring 17068  df-subrg 17295
This theorem is referenced by:  cntzsdrg  31120
  Copyright terms: Public domain W3C validator