Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzsdrg Structured version   Visualization version   Unicode version

Theorem cntzsdrg 36113
Description: Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzsdrg.b  |-  B  =  ( Base `  R
)
cntzsdrg.m  |-  M  =  (mulGrp `  R )
cntzsdrg.z  |-  Z  =  (Cntz `  M )
Assertion
Ref Expression
cntzsdrg  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubDRing `  R )
)

Proof of Theorem cntzsdrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 463 . 2  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  R  e.  DivRing )
2 drngring 18031 . . 3  |-  ( R  e.  DivRing  ->  R  e.  Ring )
3 cntzsdrg.b . . . 4  |-  B  =  ( Base `  R
)
4 cntzsdrg.m . . . 4  |-  M  =  (mulGrp `  R )
5 cntzsdrg.z . . . 4  |-  Z  =  (Cntz `  M )
63, 4, 5cntzsubr 18089 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)
72, 6sylan 478 . 2  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)
8 oveq2 6323 . . . . . . 7  |-  ( y  =  ( 0g `  R )  ->  (
( ( invr `  R
) `  x )
( .r `  R
) y )  =  ( ( ( invr `  R ) `  x
) ( .r `  R ) ( 0g
`  R ) ) )
9 oveq1 6322 . . . . . . 7  |-  ( y  =  ( 0g `  R )  ->  (
y ( .r `  R ) ( (
invr `  R ) `  x ) )  =  ( ( 0g `  R ) ( .r
`  R ) ( ( invr `  R
) `  x )
) )
108, 9eqeq12d 2477 . . . . . 6  |-  ( y  =  ( 0g `  R )  ->  (
( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
)  <->  ( ( (
invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( ( 0g `  R ) ( .r `  R
) ( ( invr `  R ) `  x
) ) ) )
11 eldifsn 4110 . . . . . . . 8  |-  ( y  e.  ( S  \  { ( 0g `  R ) } )  <-> 
( y  e.  S  /\  y  =/=  ( 0g `  R ) ) )
12 eqid 2462 . . . . . . . . . . . . . 14  |-  (Unit `  R )  =  (Unit `  R )
134oveq1i 6325 . . . . . . . . . . . . . 14  |-  ( Ms  (Unit `  R ) )  =  ( (mulGrp `  R
)s  (Unit `  R )
)
14 eqid 2462 . . . . . . . . . . . . . 14  |-  ( invr `  R )  =  (
invr `  R )
1512, 13, 14invrfval 17950 . . . . . . . . . . . . 13  |-  ( invr `  R )  =  ( invg `  ( Ms  (Unit `  R ) ) )
16 eqid 2462 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  R )  =  ( 0g `  R
)
173, 12, 16isdrng 18028 . . . . . . . . . . . . . . . 16  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  { ( 0g `  R ) } ) ) )
1817simprbi 470 . . . . . . . . . . . . . . 15  |-  ( R  e.  DivRing  ->  (Unit `  R
)  =  ( B 
\  { ( 0g
`  R ) } ) )
1918oveq2d 6331 . . . . . . . . . . . . . 14  |-  ( R  e.  DivRing  ->  ( Ms  (Unit `  R ) )  =  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
2019fveq2d 5892 . . . . . . . . . . . . 13  |-  ( R  e.  DivRing  ->  ( invg `  ( Ms  (Unit `  R )
) )  =  ( invg `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
2115, 20syl5eq 2508 . . . . . . . . . . . 12  |-  ( R  e.  DivRing  ->  ( invr `  R
)  =  ( invg `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
2221ad2antrr 737 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( invr `  R )  =  ( invg `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
2322fveq1d 5890 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invr `  R ) `  x )  =  ( ( invg `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  x
) )
244oveq1i 6325 . . . . . . . . . . . . . 14  |-  ( Ms  ( B  \  { ( 0g `  R ) } ) )  =  ( (mulGrp `  R
)s  ( B  \  {
( 0g `  R
) } ) )
253, 16, 24drngmgp 18036 . . . . . . . . . . . . 13  |-  ( R  e.  DivRing  ->  ( Ms  ( B 
\  { ( 0g
`  R ) } ) )  e.  Grp )
2625ad2antrr 737 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( Ms  ( B  \  { ( 0g
`  R ) } ) )  e.  Grp )
27 ssdif 3580 . . . . . . . . . . . . 13  |-  ( S 
C_  B  ->  ( S  \  { ( 0g
`  R ) } )  C_  ( B  \  { ( 0g `  R ) } ) )
2827ad2antlr 738 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( S  \  { ( 0g `  R ) } ) 
C_  ( B  \  { ( 0g `  R ) } ) )
29 difss 3572 . . . . . . . . . . . . . 14  |-  ( B 
\  { ( 0g
`  R ) } )  C_  B
30 eqid 2462 . . . . . . . . . . . . . . 15  |-  ( Ms  ( B  \  { ( 0g `  R ) } ) )  =  ( Ms  ( B  \  { ( 0g `  R ) } ) )
314, 3mgpbas 17778 . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  M
)
3230, 31ressbas2 15229 . . . . . . . . . . . . . 14  |-  ( ( B  \  { ( 0g `  R ) } )  C_  B  ->  ( B  \  {
( 0g `  R
) } )  =  ( Base `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
3329, 32ax-mp 5 . . . . . . . . . . . . 13  |-  ( B 
\  { ( 0g
`  R ) } )  =  ( Base `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
34 eqid 2462 . . . . . . . . . . . . 13  |-  (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )  =  (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
3533, 34cntzsubg 17039 . . . . . . . . . . . 12  |-  ( ( ( Ms  ( B  \  { ( 0g `  R ) } ) )  e.  Grp  /\  ( S  \  { ( 0g `  R ) } )  C_  ( B  \  { ( 0g
`  R ) } ) )  ->  (
(Cntz `  ( Ms  ( B  \  { ( 0g
`  R ) } ) ) ) `  ( S  \  { ( 0g `  R ) } ) )  e.  (SubGrp `  ( Ms  ( B  \  { ( 0g
`  R ) } ) ) ) )
3626, 28, 35syl2anc 671 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  ( S  \  { ( 0g
`  R ) } ) )  e.  (SubGrp `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
37 simpr 467 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  S  C_  B )
38 difss 3572 . . . . . . . . . . . . . . . 16  |-  ( S 
\  { ( 0g
`  R ) } )  C_  S
3931, 5cntz2ss 17035 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  B  /\  ( S  \  { ( 0g `  R ) } )  C_  S
)  ->  ( Z `  S )  C_  ( Z `  ( S  \  { ( 0g `  R ) } ) ) )
4037, 38, 39sylancl 673 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  ( Z `  S )  C_  ( Z `  ( S  \  { ( 0g
`  R ) } ) ) )
4140ssdifssd 3583 . . . . . . . . . . . . . 14  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  (
( Z `  S
)  \  { ( 0g `  R ) } )  C_  ( Z `  ( S  \  {
( 0g `  R
) } ) ) )
4241sselda 3444 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( Z `  ( S 
\  { ( 0g
`  R ) } ) ) )
4331, 5cntzssv 17031 . . . . . . . . . . . . . . 15  |-  ( Z `
 S )  C_  B
44 ssdif 3580 . . . . . . . . . . . . . . 15  |-  ( ( Z `  S ) 
C_  B  ->  (
( Z `  S
)  \  { ( 0g `  R ) } )  C_  ( B  \  { ( 0g `  R ) } ) )
4543, 44mp1i 13 . . . . . . . . . . . . . 14  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  (
( Z `  S
)  \  { ( 0g `  R ) } )  C_  ( B  \  { ( 0g `  R ) } ) )
4645sselda 3444 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( B  \  { ( 0g `  R ) } ) )
4742, 46elind 3630 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( ( Z `  ( S  \  { ( 0g `  R ) } ) )  i^i  ( B  \  {
( 0g `  R
) } ) ) )
48 fvex 5898 . . . . . . . . . . . . . . 15  |-  ( Base `  R )  e.  _V
493, 48eqeltri 2536 . . . . . . . . . . . . . 14  |-  B  e. 
_V
50 difexg 4565 . . . . . . . . . . . . . 14  |-  ( B  e.  _V  ->  ( B  \  { ( 0g
`  R ) } )  e.  _V )
5149, 50ax-mp 5 . . . . . . . . . . . . 13  |-  ( B 
\  { ( 0g
`  R ) } )  e.  _V
5230, 5, 34resscntz 17034 . . . . . . . . . . . . 13  |-  ( ( ( B  \  {
( 0g `  R
) } )  e. 
_V  /\  ( S  \  { ( 0g `  R ) } ) 
C_  ( B  \  { ( 0g `  R ) } ) )  ->  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  ( S  \  { ( 0g
`  R ) } ) )  =  ( ( Z `  ( S  \  { ( 0g
`  R ) } ) )  i^i  ( B  \  { ( 0g
`  R ) } ) ) )
5351, 28, 52sylancr 674 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  ( S  \  { ( 0g
`  R ) } ) )  =  ( ( Z `  ( S  \  { ( 0g
`  R ) } ) )  i^i  ( B  \  { ( 0g
`  R ) } ) ) )
5447, 53eleqtrrd 2543 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g
`  R ) } ) ) ) `  ( S  \  { ( 0g `  R ) } ) ) )
55 eqid 2462 . . . . . . . . . . . 12  |-  ( invg `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )  =  ( invg `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
5655subginvcl 16875 . . . . . . . . . . 11  |-  ( ( ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 ( S  \  { ( 0g `  R ) } ) )  e.  (SubGrp `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )  /\  x  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 ( S  \  { ( 0g `  R ) } ) ) )  ->  (
( invg `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  x
)  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  ( S  \  { ( 0g
`  R ) } ) ) )
5736, 54, 56syl2anc 671 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invg `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 x )  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 ( S  \  { ( 0g `  R ) } ) ) )
5823, 57eqeltrd 2540 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invr `  R ) `  x )  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g
`  R ) } ) ) ) `  ( S  \  { ( 0g `  R ) } ) ) )
59 eqid 2462 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
604, 59mgpplusg 17776 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( +g  `  M
)
6130, 60ressplusg 15288 . . . . . . . . . . 11  |-  ( ( B  \  { ( 0g `  R ) } )  e.  _V  ->  ( .r `  R
)  =  ( +g  `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
6251, 61ax-mp 5 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( +g  `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
6362, 34cntzi 17032 . . . . . . . . 9  |-  ( ( ( ( invr `  R
) `  x )  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 ( S  \  { ( 0g `  R ) } ) )  /\  y  e.  ( S  \  {
( 0g `  R
) } ) )  ->  ( ( (
invr `  R ) `  x ) ( .r
`  R ) y )  =  ( y ( .r `  R
) ( ( invr `  R ) `  x
) ) )
6458, 63sylan 478 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  ( S  \  { ( 0g `  R ) } ) )  -> 
( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
) )
6511, 64sylan2br 483 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  ( y  e.  S  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
) )
6665anassrs 658 . . . . . 6  |-  ( ( ( ( ( R  e.  DivRing  /\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  /\  y  =/=  ( 0g `  R ) )  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) y )  =  ( y ( .r `  R
) ( ( invr `  R ) `  x
) ) )
672ad3antrrr 741 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  R  e.  Ring )
681adantr 471 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  R  e.  DivRing )
69 eldifi 3567 . . . . . . . . . . . 12  |-  ( x  e.  ( ( Z `
 S )  \  { ( 0g `  R ) } )  ->  x  e.  ( Z `  S ) )
7069adantl 472 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( Z `  S ) )
7143, 70sseldi 3442 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  B )
72 eldifsni 4111 . . . . . . . . . . 11  |-  ( x  e.  ( ( Z `
 S )  \  { ( 0g `  R ) } )  ->  x  =/=  ( 0g `  R ) )
7372adantl 472 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  =/=  ( 0g `  R ) )
743, 16, 14drnginvrcl 18041 . . . . . . . . . 10  |-  ( ( R  e.  DivRing  /\  x  e.  B  /\  x  =/=  ( 0g `  R
) )  ->  (
( invr `  R ) `  x )  e.  B
)
7568, 71, 73, 74syl3anc 1276 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invr `  R ) `  x )  e.  B
)
7675adantr 471 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( ( invr `  R ) `  x )  e.  B
)
773, 59, 16ringrz 17867 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  x )  e.  B
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
7867, 76, 77syl2anc 671 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
793, 59, 16ringlz 17866 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  x )  e.  B
)  ->  ( ( 0g `  R ) ( .r `  R ) ( ( invr `  R
) `  x )
)  =  ( 0g
`  R ) )
8067, 76, 79syl2anc 671 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( ( 0g `  R ) ( .r `  R ) ( ( invr `  R
) `  x )
)  =  ( 0g
`  R ) )
8178, 80eqtr4d 2499 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( ( 0g `  R ) ( .r `  R
) ( ( invr `  R ) `  x
) ) )
8210, 66, 81pm2.61ne 2721 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) y )  =  ( y ( .r `  R
) ( ( invr `  R ) `  x
) ) )
8382ralrimiva 2814 . . . 4  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  A. y  e.  S  ( (
( invr `  R ) `  x ) ( .r
`  R ) y )  =  ( y ( .r `  R
) ( ( invr `  R ) `  x
) ) )
84 simplr 767 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  S  C_  B
)
8531, 60, 5cntzel 17026 . . . . 5  |-  ( ( S  C_  B  /\  ( ( invr `  R
) `  x )  e.  B )  ->  (
( ( invr `  R
) `  x )  e.  ( Z `  S
)  <->  A. y  e.  S  ( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
) ) )
8684, 75, 85syl2anc 671 . . . 4  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( (
( invr `  R ) `  x )  e.  ( Z `  S )  <->  A. y  e.  S  ( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
) ) )
8783, 86mpbird 240 . . 3  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invr `  R ) `  x )  e.  ( Z `  S ) )
8887ralrimiva 2814 . 2  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  A. x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  ( Z `  S
) )
8914, 16issdrg2 36109 . 2  |-  ( ( Z `  S )  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  ( Z `  S )  e.  (SubRing `  R )  /\  A. x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) ( ( invr `  R
) `  x )  e.  ( Z `  S
) ) )
901, 7, 88, 89syl3anbrc 1198 1  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubDRing `  R )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   _Vcvv 3057    \ cdif 3413    i^i cin 3415    C_ wss 3416   {csn 3980   ` cfv 5601  (class class class)co 6315   Basecbs 15170   ↾s cress 15171   +g cplusg 15239   .rcmulr 15240   0gc0g 15387   Grpcgrp 16718   invgcminusg 16719  SubGrpcsubg 16860  Cntzccntz 17018  mulGrpcmgp 17772   Ringcrg 17829  Unitcui 17916   invrcinvr 17948   DivRingcdr 18024  SubRingcsubrg 18053  SubDRingcsdrg 36106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-tpos 6999  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-er 7389  df-en 7596  df-dom 7597  df-sdom 7598  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-nn 10638  df-2 10696  df-3 10697  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-0g 15389  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-submnd 16632  df-grp 16722  df-minusg 16723  df-subg 16863  df-cntz 17020  df-mgp 17773  df-ur 17785  df-ring 17831  df-oppr 17900  df-dvdsr 17918  df-unit 17919  df-invr 17949  df-dvr 17960  df-drng 18026  df-subrg 18055  df-sdrg 36107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator