MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt1 Structured version   Unicode version

Theorem cnt1 19612
Description: The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnt1  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  J  e.  Fre )

Proof of Theorem cnt1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cntop1 19502 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
213ad2ant3 1014 . 2  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  J  e.  Top )
3 eqid 2462 . . . . . . . . . 10  |-  U. J  =  U. J
4 eqid 2462 . . . . . . . . . 10  |-  U. K  =  U. K
53, 4cnf 19508 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
653ad2ant3 1014 . . . . . . . 8  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  F : U. J --> U. K
)
7 ffn 5724 . . . . . . . 8  |-  ( F : U. J --> U. K  ->  F  Fn  U. J
)
86, 7syl 16 . . . . . . 7  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  F  Fn  U. J )
9 fnsnfv 5920 . . . . . . 7  |-  ( ( F  Fn  U. J  /\  x  e.  U. J
)  ->  { ( F `  x ) }  =  ( F " { x } ) )
108, 9sylan 471 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  { ( F `  x ) }  =  ( F
" { x }
) )
1110imaeq2d 5330 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( `' F " { ( F `  x ) } )  =  ( `' F " ( F
" { x }
) ) )
12 simpl2 995 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  F : X -1-1-> Y )
13 fdm 5728 . . . . . . . . . . 11  |-  ( F : U. J --> U. K  ->  dom  F  =  U. J )
146, 13syl 16 . . . . . . . . . 10  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  dom  F  =  U. J
)
15 f1dm 5778 . . . . . . . . . . 11  |-  ( F : X -1-1-> Y  ->  dom  F  =  X )
16153ad2ant2 1013 . . . . . . . . . 10  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  dom  F  =  X )
1714, 16eqtr3d 2505 . . . . . . . . 9  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  U. J  =  X
)
1817eleq2d 2532 . . . . . . . 8  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  -> 
( x  e.  U. J 
<->  x  e.  X ) )
1918biimpa 484 . . . . . . 7  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  x  e.  X )
2019snssd 4167 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  { x }  C_  X )
21 f1imacnv 5825 . . . . . 6  |-  ( ( F : X -1-1-> Y  /\  { x }  C_  X )  ->  ( `' F " ( F
" { x }
) )  =  {
x } )
2212, 20, 21syl2anc 661 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( `' F " ( F
" { x }
) )  =  {
x } )
2311, 22eqtrd 2503 . . . 4  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( `' F " { ( F `  x ) } )  =  {
x } )
24 simpl3 996 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  F  e.  ( J  Cn  K
) )
25 simpl1 994 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  K  e.  Fre )
266ffvelrnda 6014 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( F `  x )  e.  U. K )
274t1sncld 19588 . . . . . 6  |-  ( ( K  e.  Fre  /\  ( F `  x )  e.  U. K )  ->  { ( F `
 x ) }  e.  ( Clsd `  K
) )
2825, 26, 27syl2anc 661 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  { ( F `  x ) }  e.  ( Clsd `  K ) )
29 cnclima 19530 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  { ( F `  x
) }  e.  (
Clsd `  K )
)  ->  ( `' F " { ( F `
 x ) } )  e.  ( Clsd `  J ) )
3024, 28, 29syl2anc 661 . . . 4  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( `' F " { ( F `  x ) } )  e.  (
Clsd `  J )
)
3123, 30eqeltrrd 2551 . . 3  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  { x }  e.  ( Clsd `  J ) )
3231ralrimiva 2873 . 2  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  A. x  e.  U. J { x }  e.  ( Clsd `  J )
)
333ist1 19583 . 2  |-  ( J  e.  Fre  <->  ( J  e.  Top  /\  A. x  e.  U. J { x }  e.  ( Clsd `  J ) ) )
342, 32, 33sylanbrc 664 1  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  J  e.  Fre )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2809    C_ wss 3471   {csn 4022   U.cuni 4240   `'ccnv 4993   dom cdm 4994   "cima 4997    Fn wfn 5576   -->wf 5577   -1-1->wf1 5578   ` cfv 5581  (class class class)co 6277   Topctop 19156   Clsdccld 19278    Cn ccn 19486   Frect1 19569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-map 7414  df-top 19161  df-topon 19164  df-cld 19281  df-cn 19489  df-t1 19576
This theorem is referenced by:  restt1  19629  sst1  19636  t1hmph  20022
  Copyright terms: Public domain W3C validator