MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt1 Structured version   Unicode version

Theorem cnt1 20358
Description: The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnt1  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  J  e.  Fre )

Proof of Theorem cnt1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cntop1 20248 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
213ad2ant3 1029 . 2  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  J  e.  Top )
3 eqid 2423 . . . . . . . . . 10  |-  U. J  =  U. J
4 eqid 2423 . . . . . . . . . 10  |-  U. K  =  U. K
53, 4cnf 20254 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
653ad2ant3 1029 . . . . . . . 8  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  F : U. J --> U. K
)
7 ffn 5744 . . . . . . . 8  |-  ( F : U. J --> U. K  ->  F  Fn  U. J
)
86, 7syl 17 . . . . . . 7  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  F  Fn  U. J )
9 fnsnfv 5939 . . . . . . 7  |-  ( ( F  Fn  U. J  /\  x  e.  U. J
)  ->  { ( F `  x ) }  =  ( F " { x } ) )
108, 9sylan 474 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  { ( F `  x ) }  =  ( F
" { x }
) )
1110imaeq2d 5185 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( `' F " { ( F `  x ) } )  =  ( `' F " ( F
" { x }
) ) )
12 simpl2 1010 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  F : X -1-1-> Y )
13 fdm 5748 . . . . . . . . . . 11  |-  ( F : U. J --> U. K  ->  dom  F  =  U. J )
146, 13syl 17 . . . . . . . . . 10  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  dom  F  =  U. J
)
15 f1dm 5798 . . . . . . . . . . 11  |-  ( F : X -1-1-> Y  ->  dom  F  =  X )
16153ad2ant2 1028 . . . . . . . . . 10  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  dom  F  =  X )
1714, 16eqtr3d 2466 . . . . . . . . 9  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  U. J  =  X
)
1817eleq2d 2493 . . . . . . . 8  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  -> 
( x  e.  U. J 
<->  x  e.  X ) )
1918biimpa 487 . . . . . . 7  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  x  e.  X )
2019snssd 4143 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  { x }  C_  X )
21 f1imacnv 5845 . . . . . 6  |-  ( ( F : X -1-1-> Y  /\  { x }  C_  X )  ->  ( `' F " ( F
" { x }
) )  =  {
x } )
2212, 20, 21syl2anc 666 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( `' F " ( F
" { x }
) )  =  {
x } )
2311, 22eqtrd 2464 . . . 4  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( `' F " { ( F `  x ) } )  =  {
x } )
24 simpl3 1011 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  F  e.  ( J  Cn  K
) )
25 simpl1 1009 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  K  e.  Fre )
266ffvelrnda 6035 . . . . . 6  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( F `  x )  e.  U. K )
274t1sncld 20334 . . . . . 6  |-  ( ( K  e.  Fre  /\  ( F `  x )  e.  U. K )  ->  { ( F `
 x ) }  e.  ( Clsd `  K
) )
2825, 26, 27syl2anc 666 . . . . 5  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  { ( F `  x ) }  e.  ( Clsd `  K ) )
29 cnclima 20276 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  { ( F `  x
) }  e.  (
Clsd `  K )
)  ->  ( `' F " { ( F `
 x ) } )  e.  ( Clsd `  J ) )
3024, 28, 29syl2anc 666 . . . 4  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  ( `' F " { ( F `  x ) } )  e.  (
Clsd `  J )
)
3123, 30eqeltrrd 2512 . . 3  |-  ( ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  U. J )  ->  { x }  e.  ( Clsd `  J ) )
3231ralrimiva 2840 . 2  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  A. x  e.  U. J { x }  e.  ( Clsd `  J )
)
333ist1 20329 . 2  |-  ( J  e.  Fre  <->  ( J  e.  Top  /\  A. x  e.  U. J { x }  e.  ( Clsd `  J ) ) )
342, 32, 33sylanbrc 669 1  |-  ( ( K  e.  Fre  /\  F : X -1-1-> Y  /\  F  e.  ( J  Cn  K ) )  ->  J  e.  Fre )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   A.wral 2776    C_ wss 3437   {csn 3997   U.cuni 4217   `'ccnv 4850   dom cdm 4851   "cima 4854    Fn wfn 5594   -->wf 5595   -1-1->wf1 5596   ` cfv 5599  (class class class)co 6303   Topctop 19909   Clsdccld 20023    Cn ccn 20232   Frect1 20315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3084  df-sbc 3301  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-map 7480  df-top 19913  df-topon 19915  df-cld 20026  df-cn 20235  df-t1 20322
This theorem is referenced by:  restt1  20375  sst1  20382  t1hmph  20798
  Copyright terms: Public domain W3C validator