MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrg Structured version   Unicode version

Theorem cnsubrg 18241
Description: There are no subrings of the complex numbers strictly between  RR and  CC. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cnsubrg  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  R  e.  { RR ,  CC } )

Proof of Theorem cnsubrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssdif0 3880 . . . 4  |-  ( R 
C_  RR  <->  ( R  \  RR )  =  (/) )
2 simpr 461 . . . . . 6  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  R  C_  RR )  ->  R  C_  RR )
3 simplr 754 . . . . . 6  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  R  C_  RR )  ->  RR  C_  R
)
42, 3eqssd 3516 . . . . 5  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  R  C_  RR )  ->  R  =  RR )
54orcd 392 . . . 4  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  R  C_  RR )  ->  ( R  =  RR  \/  R  =  CC ) )
61, 5sylan2br 476 . . 3  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( R  \  RR )  =  (/) )  ->  ( R  =  RR  \/  R  =  CC ) )
7 n0 3789 . . . 4  |-  ( ( R  \  RR )  =/=  (/)  <->  E. x  x  e.  ( R  \  RR ) )
8 simpll 753 . . . . . . . . . 10  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  R  e.  (SubRing ` fld ) )
9 cnfldbas 18190 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
109subrgss 17208 . . . . . . . . . 10  |-  ( R  e.  (SubRing ` fld )  ->  R  C_  CC )
118, 10syl 16 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  R  C_  CC )
12 replim 12901 . . . . . . . . . . . . 13  |-  ( y  e.  CC  ->  y  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
1312ad2antll 728 . . . . . . . . . . . 12  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  y  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
14 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  R  e.  (SubRing ` fld ) )
15 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  RR  C_  R )
16 recl 12895 . . . . . . . . . . . . . . 15  |-  ( y  e.  CC  ->  (
Re `  y )  e.  RR )
1716ad2antll 728 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
Re `  y )  e.  RR )
1815, 17sseldd 3500 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
Re `  y )  e.  R )
19 ax-icn 9542 . . . . . . . . . . . . . . . . . . 19  |-  _i  e.  CC
2019a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  _i  e.  CC )
21 eldifi 3621 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( R  \  RR )  ->  x  e.  R )
2221adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  x  e.  R )
2311, 22sseldd 3500 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  x  e.  CC )
24 imcl 12896 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  (
Im `  x )  e.  RR )
2523, 24syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Im `  x )  e.  RR )
2625recnd 9613 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Im `  x )  e.  CC )
27 eldifn 3622 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( R  \  RR )  ->  -.  x  e.  RR )
2827adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  -.  x  e.  RR )
29 reim0b 12904 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  (
x  e.  RR  <->  ( Im `  x )  =  0 ) )
3029necon3bbid 2709 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  ( -.  x  e.  RR  <->  ( Im `  x )  =/=  0 ) )
3123, 30syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( -.  x  e.  RR  <->  ( Im `  x )  =/=  0
) )
3228, 31mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Im `  x )  =/=  0
)
3320, 26, 32divcan4d 10317 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( (
_i  x.  ( Im `  x ) )  / 
( Im `  x
) )  =  _i )
34 mulcl 9567 . . . . . . . . . . . . . . . . . . 19  |-  ( ( _i  e.  CC  /\  ( Im `  x )  e.  CC )  -> 
( _i  x.  (
Im `  x )
)  e.  CC )
3519, 26, 34sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( _i  x.  ( Im `  x
) )  e.  CC )
3635, 26, 32divrecd 10314 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( (
_i  x.  ( Im `  x ) )  / 
( Im `  x
) )  =  ( ( _i  x.  (
Im `  x )
)  x.  ( 1  /  ( Im `  x ) ) ) )
3733, 36eqtr3d 2505 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  _i  =  ( ( _i  x.  ( Im `  x ) )  x.  ( 1  /  ( Im `  x ) ) ) )
3823recld 12979 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Re `  x )  e.  RR )
3938recnd 9613 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( Re `  x )  e.  CC )
4023, 39negsubd 9927 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( x  +  -u ( Re `  x ) )  =  ( x  -  (
Re `  x )
) )
41 replim 12901 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  x  =  ( ( Re
`  x )  +  ( _i  x.  (
Im `  x )
) ) )
4223, 41syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  x  =  ( ( Re `  x )  +  ( _i  x.  ( Im
`  x ) ) ) )
4342oveq1d 6292 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( x  -  ( Re `  x ) )  =  ( ( ( Re
`  x )  +  ( _i  x.  (
Im `  x )
) )  -  (
Re `  x )
) )
4439, 35pncan2d 9923 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( (
( Re `  x
)  +  ( _i  x.  ( Im `  x ) ) )  -  ( Re `  x ) )  =  ( _i  x.  (
Im `  x )
) )
4540, 43, 443eqtrd 2507 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( x  +  -u ( Re `  x ) )  =  ( _i  x.  (
Im `  x )
) )
46 simplr 754 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  RR  C_  R
)
4738renegcld 9977 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  -u ( Re
`  x )  e.  RR )
4846, 47sseldd 3500 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  -u ( Re
`  x )  e.  R )
49 cnfldadd 18191 . . . . . . . . . . . . . . . . . . . 20  |-  +  =  ( +g  ` fld )
5049subrgacl 17218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  (SubRing ` fld )  /\  x  e.  R  /\  -u (
Re `  x )  e.  R )  ->  (
x  +  -u (
Re `  x )
)  e.  R )
518, 22, 48, 50syl3anc 1223 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( x  +  -u ( Re `  x ) )  e.  R )
5245, 51eqeltrrd 2551 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( _i  x.  ( Im `  x
) )  e.  R
)
5325, 32rereccld 10362 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( 1  /  ( Im `  x ) )  e.  RR )
5446, 53sseldd 3500 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( 1  /  ( Im `  x ) )  e.  R )
55 cnfldmul 18192 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
5655subrgmcl 17219 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  (SubRing ` fld )  /\  (
_i  x.  ( Im `  x ) )  e.  R  /\  ( 1  /  ( Im `  x ) )  e.  R )  ->  (
( _i  x.  (
Im `  x )
)  x.  ( 1  /  ( Im `  x ) ) )  e.  R )
578, 52, 54, 56syl3anc 1223 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( (
_i  x.  ( Im `  x ) )  x.  ( 1  /  (
Im `  x )
) )  e.  R
)
5837, 57eqeltrd 2550 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  _i  e.  R )
5958adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  _i  e.  R )
60 imcl 12896 . . . . . . . . . . . . . . . 16  |-  ( y  e.  CC  ->  (
Im `  y )  e.  RR )
6160ad2antll 728 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
Im `  y )  e.  RR )
6215, 61sseldd 3500 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
Im `  y )  e.  R )
6355subrgmcl 17219 . . . . . . . . . . . . . 14  |-  ( ( R  e.  (SubRing ` fld )  /\  _i  e.  R  /\  ( Im `  y )  e.  R
)  ->  ( _i  x.  ( Im `  y
) )  e.  R
)
6414, 59, 62, 63syl3anc 1223 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
_i  x.  ( Im `  y ) )  e.  R )
6549subrgacl 17218 . . . . . . . . . . . . 13  |-  ( ( R  e.  (SubRing ` fld )  /\  (
Re `  y )  e.  R  /\  (
_i  x.  ( Im `  y ) )  e.  R )  ->  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) )  e.  R )
6614, 18, 64, 65syl3anc 1223 . . . . . . . . . . . 12  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) )  e.  R )
6713, 66eqeltrd 2550 . . . . . . . . . . 11  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( x  e.  ( R  \  RR )  /\  y  e.  CC ) )  ->  y  e.  R )
6867expr 615 . . . . . . . . . 10  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( y  e.  CC  ->  y  e.  R ) )
6968ssrdv 3505 . . . . . . . . 9  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  CC  C_  R
)
7011, 69eqssd 3516 . . . . . . . 8  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  R  =  CC )
7170olcd 393 . . . . . . 7  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  x  e.  ( R  \  RR ) )  ->  ( R  =  RR  \/  R  =  CC ) )
7271ex 434 . . . . . 6  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  (
x  e.  ( R 
\  RR )  -> 
( R  =  RR  \/  R  =  CC ) ) )
7372exlimdv 1695 . . . . 5  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  ( E. x  x  e.  ( R  \  RR )  ->  ( R  =  RR  \/  R  =  CC ) ) )
7473imp 429 . . . 4  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  E. x  x  e.  ( R  \  RR ) )  -> 
( R  =  RR  \/  R  =  CC ) )
757, 74sylan2b 475 . . 3  |-  ( ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R
)  /\  ( R  \  RR )  =/=  (/) )  -> 
( R  =  RR  \/  R  =  CC ) )
766, 75pm2.61dane 2780 . 2  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  ( R  =  RR  \/  R  =  CC )
)
77 elprg 4038 . . 3  |-  ( R  e.  (SubRing ` fld )  ->  ( R  e.  { RR ,  CC }  <->  ( R  =  RR  \/  R  =  CC ) ) )
7877adantr 465 . 2  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  ( R  e.  { RR ,  CC }  <->  ( R  =  RR  \/  R  =  CC ) ) )
7976, 78mpbird 232 1  |-  ( ( R  e.  (SubRing ` fld )  /\  RR  C_  R )  ->  R  e.  { RR ,  CC } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2657    \ cdif 3468    C_ wss 3471   (/)c0 3780   {cpr 4024   ` cfv 5581  (class class class)co 6277   CCcc 9481   RRcr 9482   0cc0 9483   1c1 9484   _ici 9485    + caddc 9486    x. cmul 9488    - cmin 9796   -ucneg 9797    / cdiv 10197   Recre 12882   Imcim 12883  SubRingcsubrg 17203  ℂfldccnfld 18186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-addf 9562  ax-mulf 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-9 10592  df-10 10593  df-n0 10787  df-z 10856  df-dec 10968  df-uz 11074  df-fz 11664  df-cj 12884  df-re 12885  df-im 12886  df-struct 14483  df-ndx 14484  df-slot 14485  df-base 14486  df-sets 14487  df-ress 14488  df-plusg 14559  df-mulr 14560  df-starv 14561  df-tset 14565  df-ple 14566  df-ds 14568  df-unif 14569  df-mnd 15723  df-grp 15853  df-subg 15988  df-mgp 16927  df-rng 16983  df-subrg 17205  df-cnfld 18187
This theorem is referenced by:  cncdrg  21529
  Copyright terms: Public domain W3C validator