MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubglem Structured version   Unicode version

Theorem cnsubglem 18230
Description: Lemma for resubdrg 18406 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
cnsubglem.1  |-  ( x  e.  A  ->  x  e.  CC )
cnsubglem.2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )
cnsubglem.3  |-  ( x  e.  A  ->  -u x  e.  A )
cnsubglem.4  |-  B  e.  A
Assertion
Ref Expression
cnsubglem  |-  A  e.  (SubGrp ` fld )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem cnsubglem
StepHypRef Expression
1 cnsubglem.1 . . 3  |-  ( x  e.  A  ->  x  e.  CC )
21ssriv 3503 . 2  |-  A  C_  CC
3 cnsubglem.4 . . 3  |-  B  e.  A
4 ne0i 3786 . . 3  |-  ( B  e.  A  ->  A  =/=  (/) )
53, 4ax-mp 5 . 2  |-  A  =/=  (/)
6 cnsubglem.2 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )
76ralrimiva 2873 . . . 4  |-  ( x  e.  A  ->  A. y  e.  A  ( x  +  y )  e.  A )
8 cnfldneg 18210 . . . . . 6  |-  ( x  e.  CC  ->  (
( invg ` fld ) `  x )  =  -u x )
91, 8syl 16 . . . . 5  |-  ( x  e.  A  ->  (
( invg ` fld ) `  x )  =  -u x )
10 cnsubglem.3 . . . . 5  |-  ( x  e.  A  ->  -u x  e.  A )
119, 10eqeltrd 2550 . . . 4  |-  ( x  e.  A  ->  (
( invg ` fld ) `  x )  e.  A
)
127, 11jca 532 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  ( x  +  y
)  e.  A  /\  ( ( invg ` fld ) `  x )  e.  A ) )
1312rgen 2819 . 2  |-  A. x  e.  A  ( A. y  e.  A  (
x  +  y )  e.  A  /\  (
( invg ` fld ) `  x )  e.  A
)
14 cnrng 18206 . . . 4  |-fld  e.  Ring
15 rnggrp 16986 . . . 4  |-  (fld  e.  Ring  ->fld  e.  Grp )
1614, 15ax-mp 5 . . 3  |-fld  e.  Grp
17 cnfldbas 18190 . . . 4  |-  CC  =  ( Base ` fld )
18 cnfldadd 18191 . . . 4  |-  +  =  ( +g  ` fld )
19 eqid 2462 . . . 4  |-  ( invg ` fld )  =  ( invg ` fld )
2017, 18, 19issubg2 16006 . . 3  |-  (fld  e.  Grp  ->  ( A  e.  (SubGrp ` fld ) 
<->  ( A  C_  CC  /\  A  =/=  (/)  /\  A. x  e.  A  ( A. y  e.  A  ( x  +  y
)  e.  A  /\  ( ( invg ` fld ) `  x )  e.  A ) ) ) )
2116, 20ax-mp 5 . 2  |-  ( A  e.  (SubGrp ` fld )  <->  ( A  C_  CC  /\  A  =/=  (/)  /\  A. x  e.  A  ( A. y  e.  A  ( x  +  y
)  e.  A  /\  ( ( invg ` fld ) `  x )  e.  A ) ) )
222, 5, 13, 21mpbir3an 1173 1  |-  A  e.  (SubGrp ` fld )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   A.wral 2809    C_ wss 3471   (/)c0 3780   ` cfv 5581  (class class class)co 6277   CCcc 9481    + caddc 9486   -ucneg 9797   Grpcgrp 15718   invgcminusg 15719  SubGrpcsubg 15985   Ringcrg 16981  ℂfldccnfld 18186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-addf 9562  ax-mulf 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-9 10592  df-10 10593  df-n0 10787  df-z 10856  df-dec 10968  df-uz 11074  df-fz 11664  df-struct 14483  df-ndx 14484  df-slot 14485  df-base 14486  df-sets 14487  df-ress 14488  df-plusg 14559  df-mulr 14560  df-starv 14561  df-tset 14565  df-ple 14566  df-ds 14568  df-unif 14569  df-0g 14688  df-mnd 15723  df-grp 15853  df-minusg 15854  df-subg 15988  df-cmn 16591  df-mgp 16927  df-rng 16983  df-cring 16984  df-cnfld 18187
This theorem is referenced by:  cnsubrglem  18231  zringmulg  18259  zrngmulg  18265  remulg  18405
  Copyright terms: Public domain W3C validator