MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrngo Unicode version

Theorem cnrngo 20900
Description: The set of complex numbers is a (unital) ring. (Contributed by Steve Rodriguez, 2-Feb-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnrngo  |-  <.  +  ,  x.  >.  e.  RingOps

Proof of Theorem cnrngo
StepHypRef Expression
1 cnaddablo 20847 . . 3  |-  +  e.  AbelOp
2 ax-mulf 8697 . . 3  |-  x.  :
( CC  X.  CC )
--> CC
31, 2pm3.2i 443 . 2  |-  (  +  e.  AbelOp  /\  x.  : ( CC  X.  CC ) --> CC )
4 mulass 8705 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
5 adddi 8706 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z
) ) )
6 adddir 8710 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
74, 5, 63jca 1137 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) )  /\  ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) ) )
87rgen3 2602 . . 3  |-  A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )
9 ax-1cn 8675 . . . 4  |-  1  e.  CC
10 mulid2 8715 . . . . . 6  |-  ( y  e.  CC  ->  (
1  x.  y )  =  y )
11 mulid1 8714 . . . . . 6  |-  ( y  e.  CC  ->  (
y  x.  1 )  =  y )
1210, 11jca 520 . . . . 5  |-  ( y  e.  CC  ->  (
( 1  x.  y
)  =  y  /\  ( y  x.  1 )  =  y ) )
1312rgen 2570 . . . 4  |-  A. y  e.  CC  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y )
14 oveq1 5717 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  y )  =  ( 1  x.  y ) )
1514eqeq1d 2261 . . . . . . 7  |-  ( x  =  1  ->  (
( x  x.  y
)  =  y  <->  ( 1  x.  y )  =  y ) )
16 oveq2 5718 . . . . . . . 8  |-  ( x  =  1  ->  (
y  x.  x )  =  ( y  x.  1 ) )
1716eqeq1d 2261 . . . . . . 7  |-  ( x  =  1  ->  (
( y  x.  x
)  =  y  <->  ( y  x.  1 )  =  y ) )
1815, 17anbi12d 694 . . . . . 6  |-  ( x  =  1  ->  (
( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )  <->  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y ) ) )
1918ralbidv 2527 . . . . 5  |-  ( x  =  1  ->  ( A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )  <->  A. y  e.  CC  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y ) ) )
2019rcla4ev 2821 . . . 4  |-  ( ( 1  e.  CC  /\  A. y  e.  CC  (
( 1  x.  y
)  =  y  /\  ( y  x.  1 )  =  y ) )  ->  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) )
219, 13, 20mp2an 656 . . 3  |-  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )
228, 21pm3.2i 443 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) )
23 mulex 10232 . . 3  |-  x.  e.  _V
24 ablogrpo 20781 . . . . . 6  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
251, 24ax-mp 10 . . . . 5  |-  +  e.  GrpOp
26 ax-addf 8696 . . . . . 6  |-  +  :
( CC  X.  CC )
--> CC
2726fdmi 5251 . . . . 5  |-  dom  +  =  ( CC  X.  CC )
2825, 27grporn 20709 . . . 4  |-  CC  =  ran  +
2928isrngo 20875 . . 3  |-  (  x.  e.  _V  ->  ( <.  +  ,  x.  >.  e.  RingOps  <->  ( (  +  e.  AbelOp  /\  x.  : ( CC 
X.  CC ) --> CC )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) ) ) ) )
3023, 29ax-mp 10 . 2  |-  ( <.  +  ,  x.  >.  e.  RingOps  <->  ( (  +  e.  AbelOp  /\  x.  : ( CC  X.  CC ) --> CC )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  (
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) )  /\  ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) ) ) )
313, 22, 30mpbir2an 891 1  |-  <.  +  ,  x.  >.  e.  RingOps
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   _Vcvv 2727   <.cop 3547    X. cxp 4578   -->wf 4588  (class class class)co 5710   CCcc 8615   1c1 8618    + caddc 8620    x. cmul 8622   GrpOpcgr 20683   AbelOpcablo 20778   RingOpscrngo 20872
This theorem is referenced by:  zintdom  24604
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-sub 8919  df-neg 8920  df-grpo 20688  df-ablo 20779  df-rngo 20873
  Copyright terms: Public domain W3C validator