MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrest Structured version   Unicode version

Theorem cnrest 19545
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnrest.1  |-  X  = 
U. J
Assertion
Ref Expression
cnrest  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )

Proof of Theorem cnrest
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 cnrest.1 . . . . . . 7  |-  X  = 
U. J
2 eqid 2460 . . . . . . 7  |-  U. K  =  U. K
31, 2cnf 19506 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
4 ffun 5724 . . . . . 6  |-  ( F : X --> U. K  ->  Fun  F )
5 funres 5618 . . . . . 6  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
63, 4, 53syl 20 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  Fun  ( F  |`  A ) )
76adantr 465 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  Fun  ( F  |`  A ) )
8 simpr 461 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  C_  X )
93adantr 465 . . . . . . 7  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  F : X --> U. K
)
10 fdm 5726 . . . . . . 7  |-  ( F : X --> U. K  ->  dom  F  =  X )
119, 10syl 16 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  dom  F  =  X )
128, 11sseqtr4d 3534 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  C_  dom  F )
13 ssdmres 5286 . . . . 5  |-  ( A 
C_  dom  F  <->  dom  ( F  |`  A )  =  A )
1412, 13sylib 196 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  dom  ( F  |`  A )  =  A )
157, 14jca 532 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A ) )
16 resss 5288 . . . . 5  |-  ( F  |`  A )  C_  F
17 rnss 5222 . . . . 5  |-  ( ( F  |`  A )  C_  F  ->  ran  ( F  |`  A )  C_  ran  F )
1816, 17ax-mp 5 . . . 4  |-  ran  ( F  |`  A )  C_  ran  F
19 frn 5728 . . . . 5  |-  ( F : X --> U. K  ->  ran  F  C_  U. K
)
209, 19syl 16 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  ran  F  C_  U. K )
2118, 20syl5ss 3508 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  ran  ( F  |`  A ) 
C_  U. K )
22 df-f 5583 . . . 4  |-  ( ( F  |`  A ) : A --> U. K  <->  ( ( F  |`  A )  Fn  A  /\  ran  ( F  |`  A )  C_  U. K ) )
23 df-fn 5582 . . . . 5  |-  ( ( F  |`  A )  Fn  A  <->  ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A ) )
2423anbi1i 695 . . . 4  |-  ( ( ( F  |`  A )  Fn  A  /\  ran  ( F  |`  A ) 
C_  U. K )  <->  ( ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A )  /\  ran  ( F  |`  A )  C_  U. K ) )
2522, 24bitri 249 . . 3  |-  ( ( F  |`  A ) : A --> U. K  <->  ( ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A )  /\  ran  ( F  |`  A )  C_  U. K ) )
2615, 21, 25sylanbrc 664 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A ) : A --> U. K
)
27 cnvresima 5487 . . . 4  |-  ( `' ( F  |`  A )
" o )  =  ( ( `' F " o )  i^i  A
)
28 cntop1 19500 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2928adantr 465 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  J  e.  Top )
3029adantr 465 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  J  e.  Top )
311topopn 19175 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  J )
32 ssexg 4586 . . . . . . . . 9  |-  ( ( A  C_  X  /\  X  e.  J )  ->  A  e.  _V )
3332ancoms 453 . . . . . . . 8  |-  ( ( X  e.  J  /\  A  C_  X )  ->  A  e.  _V )
3431, 33sylan 471 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  A  e.  _V )
3528, 34sylan 471 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A  e.  _V )
3635adantr 465 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  A  e.  _V )
37 cnima 19525 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  o  e.  K )  ->  ( `' F "
o )  e.  J
)
3837adantlr 714 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  ( `' F " o )  e.  J )
39 elrestr 14673 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  _V  /\  ( `' F " o )  e.  J )  -> 
( ( `' F " o )  i^i  A
)  e.  ( Jt  A ) )
4030, 36, 38, 39syl3anc 1223 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  (
( `' F "
o )  i^i  A
)  e.  ( Jt  A ) )
4127, 40syl5eqel 2552 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  C_  X
)  /\  o  e.  K )  ->  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) )
4241ralrimiva 2871 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  A. o  e.  K  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) )
431toptopon 19194 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
4428, 43sylib 196 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
45 resttopon 19421 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
4644, 45sylan 471 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( Jt  A )  e.  (TopOn `  A ) )
47 cntop2 19501 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
4847adantr 465 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  K  e.  Top )
492toptopon 19194 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
5048, 49sylib 196 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  K  e.  (TopOn `  U. K ) )
51 iscn 19495 . . 3  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  U. K ) )  ->  ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. o  e.  K  ( `' ( F  |`  A ) " o
)  e.  ( Jt  A ) ) ) )
5246, 50, 51syl2anc 661 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K
)  <->  ( ( F  |`  A ) : A --> U. K  /\  A. o  e.  K  ( `' ( F  |`  A )
" o )  e.  ( Jt  A ) ) ) )
5326, 42, 52mpbir2and 915 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106    i^i cin 3468    C_ wss 3469   U.cuni 4238   `'ccnv 4991   dom cdm 4992   ran crn 4993    |` cres 4994   "cima 4995   Fun wfun 5573    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275   ↾t crest 14665   Topctop 19154  TopOnctopon 19155    Cn ccn 19484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-fin 7510  df-fi 7860  df-rest 14667  df-topgen 14688  df-top 19159  df-bases 19161  df-topon 19162  df-cn 19487
This theorem is referenced by:  resthauslem  19623  imacmp  19656  conima  19685  kgencn2  19786  kgencn3  19787  xkopjcn  19885  cnmpt1res  19905  cnmpt2res  19906  qtoprest  19946  hmeores  20000  ftalem3  23069  rmulccn  27396  raddcn  27397  xrge0mulc1cn  27409  rrhre  27485  cvmliftmolem1  28216  cvmlift2lem9a  28238  cvmlift2lem9  28246  areacirclem2  29536  ivthALT  29581  cnres2  29713  stoweidlem28  31147  dirkercncflem2  31223
  Copyright terms: Public domain W3C validator