Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnresima Structured version   Unicode version

Theorem cnresima 30187
Description: A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
cnresima  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  ( Kt  ran  F ) ) )

Proof of Theorem cnresima
StepHypRef Expression
1 simp3 998 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  K
) )
2 simp2 997 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Top )
3 eqid 2467 . . . . 5  |-  U. K  =  U. K
43toptopon 19303 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
52, 4sylib 196 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  (TopOn `  U. K ) )
6 ssid 3528 . . . 4  |-  ran  F  C_ 
ran  F
76a1i 11 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Cn  K
) )  ->  ran  F 
C_  ran  F )
8 eqid 2467 . . . . . 6  |-  U. J  =  U. J
98, 3cnf 19615 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
10 frn 5743 . . . . 5  |-  ( F : U. J --> U. K  ->  ran  F  C_  U. K
)
119, 10syl 16 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  ran  F 
C_  U. K )
12113ad2ant3 1019 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Cn  K
) )  ->  ran  F 
C_  U. K )
13 cnrest2 19655 . . 3  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  F 
C_  ran  F  /\  ran  F  C_  U. K )  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  ( J  Cn  ( Kt  ran  F
) ) ) )
145, 7, 12, 13syl3anc 1228 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Cn  K
) )  ->  ( F  e.  ( J  Cn  K )  <->  F  e.  ( J  Cn  ( Kt  ran  F ) ) ) )
151, 14mpbid 210 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  ( Kt  ran  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    e. wcel 1767    C_ wss 3481   U.cuni 4251   ran crn 5006   -->wf 5590   ` cfv 5594  (class class class)co 6295   ↾t crest 14693   Topctop 19263  TopOnctopon 19264    Cn ccn 19593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-fin 7532  df-fi 7883  df-rest 14695  df-topgen 14716  df-top 19268  df-bases 19270  df-topon 19271  df-cn 19596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator