MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrecnv Structured version   Unicode version

Theorem cnrecnv 12972
Description: The inverse to the canonical bijection from  ( RR  X.  RR ) to  CC from cnref1o 11219. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnrecnv  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Distinct variable groups:    z, F    x, y, z
Allowed substitution hints:    F( x, y)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
21cnref1o 11219 . . . . . 6  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
3 f1ocnv 5814 . . . . . 6  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' F : CC -1-1-onto-> ( RR  X.  RR ) )
4 f1of 5802 . . . . . 6  |-  ( `' F : CC -1-1-onto-> ( RR  X.  RR )  ->  `' F : CC
--> ( RR  X.  RR ) )
52, 3, 4mp2b 10 . . . . 5  |-  `' F : CC --> ( RR  X.  RR )
65a1i 11 . . . 4  |-  ( T. 
->  `' F : CC --> ( RR 
X.  RR ) )
76feqmptd 5907 . . 3  |-  ( T. 
->  `' F  =  (
z  e.  CC  |->  ( `' F `  z ) ) )
87trud 1390 . 2  |-  `' F  =  ( z  e.  CC  |->  ( `' F `  z ) )
9 df-ov 6280 . . . . . . 7  |-  ( ( Re `  z ) F ( Im `  z ) )  =  ( F `  <. ( Re `  z ) ,  ( Im `  z ) >. )
10 recl 12917 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Re `  z )  e.  RR )
11 imcl 12918 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Im `  z )  e.  RR )
12 oveq1 6284 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  y
) ) )
13 oveq2 6285 . . . . . . . . . 10  |-  ( y  =  ( Im `  z )  ->  (
_i  x.  y )  =  ( _i  x.  ( Im `  z ) ) )
1413oveq2d 6293 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
( Re `  z
)  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
15 ovex 6305 . . . . . . . . 9  |-  ( ( Re `  z )  +  ( _i  x.  ( Im `  z ) ) )  e.  _V
1612, 14, 1, 15ovmpt2 6419 . . . . . . . 8  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR )  -> 
( ( Re `  z ) F ( Im `  z ) )  =  ( ( Re `  z )  +  ( _i  x.  ( Im `  z ) ) ) )
1710, 11, 16syl2anc 661 . . . . . . 7  |-  ( z  e.  CC  ->  (
( Re `  z
) F ( Im
`  z ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
189, 17syl5eqr 2496 . . . . . 6  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  ( ( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) ) )
19 replim 12923 . . . . . 6  |-  ( z  e.  CC  ->  z  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
2018, 19eqtr4d 2485 . . . . 5  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  z )
2120fveq2d 5856 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  ( `' F `  z ) )
22 opelxpi 5017 . . . . . 6  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR )  ->  <. ( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )
2310, 11, 22syl2anc 661 . . . . 5  |-  ( z  e.  CC  ->  <. (
Re `  z ) ,  ( Im `  z ) >.  e.  ( RR  X.  RR ) )
24 f1ocnvfv1 6163 . . . . 5  |-  ( ( F : ( RR 
X.  RR ) -1-1-onto-> CC  /\  <.
( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
252, 23, 24sylancr 663 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
2621, 25eqtr3d 2484 . . 3  |-  ( z  e.  CC  ->  ( `' F `  z )  =  <. ( Re `  z ) ,  ( Im `  z )
>. )
2726mpteq2ia 4515 . 2  |-  ( z  e.  CC  |->  ( `' F `  z ) )  =  ( z  e.  CC  |->  <. (
Re `  z ) ,  ( Im `  z ) >. )
288, 27eqtri 2470 1  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1381   T. wtru 1382    e. wcel 1802   <.cop 4016    |-> cmpt 4491    X. cxp 4983   `'ccnv 4984   -->wf 5570   -1-1-onto->wf1o 5573   ` cfv 5574  (class class class)co 6277    |-> cmpt2 6279   CCcc 9488   RRcr 9489   _ici 9492    + caddc 9493    x. cmul 9495   Recre 12904   Imcim 12905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-po 4786  df-so 4787  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6781  df-2nd 6782  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-2 10595  df-cj 12906  df-re 12907  df-im 12908
This theorem is referenced by:  cnrehmeo  21319  cnheiborlem  21320  mbfimaopnlem  21928
  Copyright terms: Public domain W3C validator