MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Unicode version

Theorem cnre 9485
Description: Alias for ax-cnre 9458, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, A, y

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 9458 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   E.wrex 2796  (class class class)co 6192   CCcc 9383   RRcr 9384   _ici 9387    + caddc 9388    x. cmul 9390
This theorem was proved from axioms:  ax-cnre 9458
This theorem is referenced by:  mulid1  9486  1re  9488  mul02  9650  cnegex  9653  recex  10071  creur  10419  creui  10420  cju  10421  cnref1o  11089  replim  12709  ipasslem11  24377
  Copyright terms: Public domain W3C validator