MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Unicode version

Theorem cnre 9521
Description: Alias for ax-cnre 9494, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, A, y

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 9494 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1399    e. wcel 1836   E.wrex 2743  (class class class)co 6214   CCcc 9419   RRcr 9420   _ici 9423    + caddc 9424    x. cmul 9426
This theorem was proved from axioms:  ax-cnre 9494
This theorem is referenced by:  mulid1  9522  1re  9524  mul02  9687  cnegex  9690  recex  10116  creur  10464  creui  10465  cju  10466  cnref1o  11152  replim  12970  ipasslem11  25893
  Copyright terms: Public domain W3C validator