MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpresti Structured version   Visualization version   Unicode version

Theorem cnpresti 20304
Description: One direction of cnprest 20305 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Hypothesis
Ref Expression
cnprest.1  |-  X  = 
U. J
Assertion
Ref Expression
cnpresti  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
)

Proof of Theorem cnpresti
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnprest.1 . . . . 5  |-  X  = 
U. J
2 eqid 2451 . . . . 5  |-  U. K  =  U. K
31, 2cnpf 20263 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  F : X --> U. K )
433ad2ant3 1031 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X --> U. K
)
5 simp1 1008 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  C_  X )
64, 5fssresd 5750 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A ) : A --> U. K
)
7 simpl2 1012 . . . . . 6  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  P  e.  A )
8 fvres 5879 . . . . . 6  |-  ( P  e.  A  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
97, 8syl 17 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
109eleq1d 2513 . . . 4  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( ( F  |`  A ) `  P
)  e.  y  <->  ( F `  P )  e.  y ) )
11 cnpimaex 20272 . . . . . . 7  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K  /\  ( F `  P )  e.  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
12113expia 1210 . . . . . 6  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K )  ->  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
13123ad2antl3 1172 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
14 idd 25 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  P  e.  x ) )
15 simp2 1009 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  A )
1614, 15jctird 547 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  ( P  e.  x  /\  P  e.  A
) ) )
17 elin 3617 . . . . . . . . . 10  |-  ( P  e.  ( x  i^i 
A )  <->  ( P  e.  x  /\  P  e.  A ) )
1816, 17syl6ibr 231 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  P  e.  ( x  i^i  A ) ) )
19 inss1 3652 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  x
20 imass2 5204 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  x  ->  ( F " ( x  i^i 
A ) )  C_  ( F " x ) )
2119, 20ax-mp 5 . . . . . . . . . . 11  |-  ( F
" ( x  i^i 
A ) )  C_  ( F " x )
22 id 22 . . . . . . . . . . 11  |-  ( ( F " x ) 
C_  y  ->  ( F " x )  C_  y )
2321, 22syl5ss 3443 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  y  ->  ( F " ( x  i^i 
A ) )  C_  y )
2423a1i 11 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( F "
x )  C_  y  ->  ( F " (
x  i^i  A )
)  C_  y )
)
2518, 24anim12d 566 . . . . . . . 8  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( P  e.  x  /\  ( F
" x )  C_  y )  ->  ( P  e.  ( x  i^i  A )  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
2625reximdv 2861 . . . . . . 7  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. x  e.  J  ( P  e.  ( x  i^i  A
)  /\  ( F " ( x  i^i  A
) )  C_  y
) ) )
27 vex 3048 . . . . . . . . . 10  |-  x  e. 
_V
2827inex1 4544 . . . . . . . . 9  |-  ( x  i^i  A )  e. 
_V
2928a1i 11 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  x  e.  J )  ->  (
x  i^i  A )  e.  _V )
30 cnptop1 20258 . . . . . . . . . 10  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
31303ad2ant3 1031 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  Top )
32 uniexg 6588 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  U. J  e.  _V )
3331, 32syl 17 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  U. J  e.  _V )
345, 1syl6sseq 3478 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  C_  U. J )
3533, 34ssexd 4550 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  e.  _V )
36 elrest 15326 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
3731, 35, 36syl2anc 667 . . . . . . . 8  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
38 simpr 463 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  z  =  ( x  i^i  A ) )
3938eleq2d 2514 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( P  e.  z  <->  P  e.  (
x  i^i  A )
) )
4038imaeq2d 5168 . . . . . . . . . . 11  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( ( F  |`  A )
" ( x  i^i 
A ) ) )
41 inss2 3653 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  A
42 resima2 5138 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  A  ->  (
( F  |`  A )
" ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
) )
4341, 42ax-mp 5 . . . . . . . . . . 11  |-  ( ( F  |`  A ) " ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
)
4440, 43syl6eq 2501 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( F " ( x  i^i  A ) ) )
4544sseq1d 3459 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( (
( F  |`  A )
" z )  C_  y 
<->  ( F " (
x  i^i  A )
)  C_  y )
)
4639, 45anbi12d 717 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( P  e.  z  /\  ( ( F  |`  A ) " z
)  C_  y )  <->  ( P  e.  ( x  i^i  A )  /\  ( F " ( x  i^i  A ) ) 
C_  y ) ) )
4729, 37, 46rexxfr2d 4617 . . . . . . 7  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y )  <->  E. x  e.  J  ( P  e.  ( x  i^i  A
)  /\  ( F " ( x  i^i  A
) )  C_  y
) ) )
4826, 47sylibrd 238 . . . . . 6  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
4948adantr 467 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5013, 49syld 45 . . . 4  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5110, 50sylbid 219 . . 3  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5251ralrimiva 2802 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. y  e.  K  ( ( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
531toptopon 19948 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
5431, 53sylib 200 . . . 4  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  (TopOn `  X
) )
55 resttopon 20177 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
5654, 5, 55syl2anc 667 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( Jt  A )  e.  (TopOn `  A ) )
57 cnptop2 20259 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
58573ad2ant3 1031 . . . 4  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  Top )
592toptopon 19948 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
6058, 59sylib 200 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  (TopOn `  U. K ) )
61 iscnp 20253 . . 3  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  U. K )  /\  P  e.  A
)  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
6256, 60, 15, 61syl3anc 1268 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
636, 52, 62mpbir2and 933 1  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738   _Vcvv 3045    i^i cin 3403    C_ wss 3404   U.cuni 4198    |` cres 4836   "cima 4837   -->wf 5578   ` cfv 5582  (class class class)co 6290   ↾t crest 15319   Topctop 19917  TopOnctopon 19918    CnP ccnp 20241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-fin 7573  df-fi 7925  df-rest 15321  df-topgen 15342  df-top 19921  df-bases 19922  df-topon 19923  df-cnp 20244
This theorem is referenced by:  efrlim  23895  cvmlift2lem11  30036
  Copyright terms: Public domain W3C validator