MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpresti Structured version   Unicode version

Theorem cnpresti 18851
Description: One direction of cnprest 18852 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Hypothesis
Ref Expression
cnprest.1  |-  X  = 
U. J
Assertion
Ref Expression
cnpresti  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
)

Proof of Theorem cnpresti
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnprest.1 . . . . 5  |-  X  = 
U. J
2 eqid 2441 . . . . 5  |-  U. K  =  U. K
31, 2cnpf 18810 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  F : X --> U. K )
433ad2ant3 1006 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X --> U. K
)
5 simp1 983 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  C_  X )
6 fssres 5575 . . 3  |-  ( ( F : X --> U. K  /\  A  C_  X )  ->  ( F  |`  A ) : A --> U. K )
74, 5, 6syl2anc 656 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A ) : A --> U. K
)
8 simpl2 987 . . . . . 6  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  P  e.  A )
9 fvres 5701 . . . . . 6  |-  ( P  e.  A  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
108, 9syl 16 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
1110eleq1d 2507 . . . 4  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( ( F  |`  A ) `  P
)  e.  y  <->  ( F `  P )  e.  y ) )
12 cnpimaex 18819 . . . . . . 7  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K  /\  ( F `  P )  e.  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
13123expia 1184 . . . . . 6  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K )  ->  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
14133ad2antl3 1147 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
15 idd 24 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  P  e.  x ) )
16 simp2 984 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  A )
1715, 16jctird 541 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  ( P  e.  x  /\  P  e.  A
) ) )
18 elin 3536 . . . . . . . . . 10  |-  ( P  e.  ( x  i^i 
A )  <->  ( P  e.  x  /\  P  e.  A ) )
1917, 18syl6ibr 227 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  P  e.  ( x  i^i  A ) ) )
20 inss1 3567 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  x
21 imass2 5201 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  x  ->  ( F " ( x  i^i 
A ) )  C_  ( F " x ) )
2220, 21ax-mp 5 . . . . . . . . . . 11  |-  ( F
" ( x  i^i 
A ) )  C_  ( F " x )
23 id 22 . . . . . . . . . . 11  |-  ( ( F " x ) 
C_  y  ->  ( F " x )  C_  y )
2422, 23syl5ss 3364 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  y  ->  ( F " ( x  i^i 
A ) )  C_  y )
2524a1i 11 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( F "
x )  C_  y  ->  ( F " (
x  i^i  A )
)  C_  y )
)
2619, 25anim12d 560 . . . . . . . 8  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( P  e.  x  /\  ( F
" x )  C_  y )  ->  ( P  e.  ( x  i^i  A )  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
2726reximdv 2825 . . . . . . 7  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. x  e.  J  ( P  e.  ( x  i^i  A
)  /\  ( F " ( x  i^i  A
) )  C_  y
) ) )
28 vex 2973 . . . . . . . . . 10  |-  x  e. 
_V
2928inex1 4430 . . . . . . . . 9  |-  ( x  i^i  A )  e. 
_V
3029a1i 11 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  x  e.  J )  ->  (
x  i^i  A )  e.  _V )
31 cnptop1 18805 . . . . . . . . . 10  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
32313ad2ant3 1006 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  Top )
33 uniexg 6376 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  U. J  e.  _V )
3432, 33syl 16 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  U. J  e.  _V )
355, 1syl6sseq 3399 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  C_  U. J )
3634, 35ssexd 4436 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  e.  _V )
37 elrest 14362 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
3832, 36, 37syl2anc 656 . . . . . . . 8  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
39 simpr 458 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  z  =  ( x  i^i  A ) )
4039eleq2d 2508 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( P  e.  z  <->  P  e.  (
x  i^i  A )
) )
4139imaeq2d 5166 . . . . . . . . . . 11  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( ( F  |`  A )
" ( x  i^i 
A ) ) )
42 inss2 3568 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  A
43 resima2 5140 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  A  ->  (
( F  |`  A )
" ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
) )
4442, 43ax-mp 5 . . . . . . . . . . 11  |-  ( ( F  |`  A ) " ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
)
4541, 44syl6eq 2489 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( F " ( x  i^i  A ) ) )
4645sseq1d 3380 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( (
( F  |`  A )
" z )  C_  y 
<->  ( F " (
x  i^i  A )
)  C_  y )
)
4740, 46anbi12d 705 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( P  e.  z  /\  ( ( F  |`  A ) " z
)  C_  y )  <->  ( P  e.  ( x  i^i  A )  /\  ( F " ( x  i^i  A ) ) 
C_  y ) ) )
4830, 38, 47rexxfr2d 4506 . . . . . . 7  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y )  <->  E. x  e.  J  ( P  e.  ( x  i^i  A
)  /\  ( F " ( x  i^i  A
) )  C_  y
) ) )
4927, 48sylibrd 234 . . . . . 6  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5049adantr 462 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5114, 50syld 44 . . . 4  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5211, 51sylbid 215 . . 3  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5352ralrimiva 2797 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. y  e.  K  ( ( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
541toptopon 18497 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
5532, 54sylib 196 . . . 4  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  (TopOn `  X
) )
56 resttopon 18724 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
5755, 5, 56syl2anc 656 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( Jt  A )  e.  (TopOn `  A ) )
58 cnptop2 18806 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
59583ad2ant3 1006 . . . 4  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  Top )
602toptopon 18497 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
6159, 60sylib 196 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  (TopOn `  U. K ) )
62 iscnp 18800 . . 3  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  U. K )  /\  P  e.  A
)  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
6357, 61, 16, 62syl3anc 1213 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
647, 53, 63mpbir2and 908 1  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714   _Vcvv 2970    i^i cin 3324    C_ wss 3325   U.cuni 4088    |` cres 4838   "cima 4839   -->wf 5411   ` cfv 5415  (class class class)co 6090   ↾t crest 14355   Topctop 18457  TopOnctopon 18458    CnP ccnp 18788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-fin 7310  df-fi 7657  df-rest 14357  df-topgen 14378  df-top 18462  df-bases 18464  df-topon 18465  df-cnp 18791
This theorem is referenced by:  efrlim  22322  cvmlift2lem11  27132
  Copyright terms: Public domain W3C validator