MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest Structured version   Unicode version

Theorem cnprest 20236
Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.)
Hypotheses
Ref Expression
cnprest.1  |-  X  = 
U. J
cnprest.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnprest  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
) )

Proof of Theorem cnprest
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop2 20190 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
21a1i 11 . 2  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top ) )
3 cnptop2 20190 . . 3  |-  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  ->  K  e.  Top )
43a1i 11 . 2  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  ->  K  e.  Top )
)
5 cnprest.1 . . . . . . . . . . . 12  |-  X  = 
U. J
65ntrss2 20003 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  C_  A )
763ad2ant1 1026 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( int `  J ) `  A
)  C_  A )
8 simp2l 1031 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  P  e.  ( ( int `  J
) `  A )
)
97, 8sseldd 3471 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  P  e.  A
)
10 fvres 5895 . . . . . . . . 9  |-  ( P  e.  A  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F  |`  A ) `  P
)  =  ( F `
 P ) )
1211eqcomd 2437 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( F `  P )  =  ( ( F  |`  A ) `
 P ) )
1312eleq1d 2498 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F `
 P )  e.  y  <->  ( ( F  |`  A ) `  P
)  e.  y ) )
14 inss1 3688 . . . . . . . . . . 11  |-  ( x  i^i  A )  C_  x
15 imass2 5224 . . . . . . . . . . 11  |-  ( ( x  i^i  A ) 
C_  x  ->  ( F " ( x  i^i 
A ) )  C_  ( F " x ) )
16 sstr2 3477 . . . . . . . . . . 11  |-  ( ( F " ( x  i^i  A ) ) 
C_  ( F "
x )  ->  (
( F " x
)  C_  y  ->  ( F " ( x  i^i  A ) ) 
C_  y ) )
1714, 15, 16mp2b 10 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  y  ->  ( F " ( x  i^i 
A ) )  C_  y )
1817anim2i 571 . . . . . . . . 9  |-  ( ( P  e.  x  /\  ( F " x ) 
C_  y )  -> 
( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)
1918reximi 2900 . . . . . . . 8  |-  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)
20 simp1l 1029 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  J  e.  Top )
215ntropn 19995 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  e.  J )
22213ad2ant1 1026 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( int `  J ) `  A
)  e.  J )
23 inopn 19860 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  x  e.  J  /\  ( ( int `  J
) `  A )  e.  J )  ->  (
x  i^i  ( ( int `  J ) `  A ) )  e.  J )
24233com23 1211 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J  /\  x  e.  J )  ->  (
x  i^i  ( ( int `  J ) `  A ) )  e.  J )
25243expia 1207 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J )  ->  (
x  e.  J  -> 
( x  i^i  (
( int `  J
) `  A )
)  e.  J ) )
2620, 22, 25syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( x  e.  J  ->  ( x  i^i  ( ( int `  J
) `  A )
)  e.  J ) )
27 elin 3655 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( x  i^i  ( ( int `  J
) `  A )
)  <->  ( P  e.  x  /\  P  e.  ( ( int `  J
) `  A )
) )
2827simplbi2com 631 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ( int `  J ) `  A
)  ->  ( P  e.  x  ->  P  e.  ( x  i^i  (
( int `  J
) `  A )
) ) )
298, 28syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( P  e.  x  ->  P  e.  ( x  i^i  (
( int `  J
) `  A )
) ) )
30 sslin 3694 . . . . . . . . . . . . . . . . 17  |-  ( ( ( int `  J
) `  A )  C_  A  ->  ( x  i^i  ( ( int `  J
) `  A )
)  C_  ( x  i^i  A ) )
317, 30syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( x  i^i  ( ( int `  J
) `  A )
)  C_  ( x  i^i  A ) )
32 imass2 5224 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( ( int `  J ) `
 A ) ) 
C_  ( x  i^i 
A )  ->  ( F " ( x  i^i  ( ( int `  J
) `  A )
) )  C_  ( F " ( x  i^i 
A ) ) )
3331, 32syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  ( F " ( x  i^i 
A ) ) )
34 sstr2 3477 . . . . . . . . . . . . . . 15  |-  ( ( F " ( x  i^i  ( ( int `  J ) `  A
) ) )  C_  ( F " ( x  i^i  A ) )  ->  ( ( F
" ( x  i^i 
A ) )  C_  y  ->  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) )
3533, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F
" ( x  i^i 
A ) )  C_  y  ->  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) )
3629, 35anim12d 565 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y )  ->  ( P  e.  ( x  i^i  ( ( int `  J
) `  A )
)  /\  ( F " ( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) )
3726, 36anim12d 565 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( x  e.  J  /\  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y ) )  ->  ( ( x  i^i  ( ( int `  J ) `  A
) )  e.  J  /\  ( P  e.  ( x  i^i  ( ( int `  J ) `
 A ) )  /\  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) ) )
38 eleq2 2502 . . . . . . . . . . . . . 14  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( P  e.  z  <->  P  e.  (
x  i^i  ( ( int `  J ) `  A ) ) ) )
39 imaeq2 5184 . . . . . . . . . . . . . . 15  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( F " z )  =  ( F " ( x  i^i  ( ( int `  J ) `  A
) ) ) )
4039sseq1d 3497 . . . . . . . . . . . . . 14  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( ( F " z )  C_  y 
<->  ( F " (
x  i^i  ( ( int `  J ) `  A ) ) ) 
C_  y ) )
4138, 40anbi12d 715 . . . . . . . . . . . . 13  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( ( P  e.  z  /\  ( F " z ) 
C_  y )  <->  ( P  e.  ( x  i^i  (
( int `  J
) `  A )
)  /\  ( F " ( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) )
4241rspcev 3188 . . . . . . . . . . . 12  |-  ( ( ( x  i^i  (
( int `  J
) `  A )
)  e.  J  /\  ( P  e.  (
x  i^i  ( ( int `  J ) `  A ) )  /\  ( F " ( x  i^i  ( ( int `  J ) `  A
) ) )  C_  y ) )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
)
4337, 42syl6 34 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( x  e.  J  /\  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y ) )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) )
4443expdimp 438 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  /\  x  e.  J
)  ->  ( ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) )
4544rexlimdva 2924 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) )
46 eleq2 2502 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( P  e.  z  <->  P  e.  x ) )
47 imaeq2 5184 . . . . . . . . . . . 12  |-  ( z  =  x  ->  ( F " z )  =  ( F " x
) )
4847sseq1d 3497 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
( F " z
)  C_  y  <->  ( F " x )  C_  y
) )
4946, 48anbi12d 715 . . . . . . . . . 10  |-  ( z  =  x  ->  (
( P  e.  z  /\  ( F "
z )  C_  y
)  <->  ( P  e.  x  /\  ( F
" x )  C_  y ) ) )
5049cbvrexv 3063 . . . . . . . . 9  |-  ( E. z  e.  J  ( P  e.  z  /\  ( F " z ) 
C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )
5145, 50syl6ib 229 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )
5219, 51impbid2 207 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
53 vex 3090 . . . . . . . . . 10  |-  x  e. 
_V
5453inex1 4566 . . . . . . . . 9  |-  ( x  i^i  A )  e. 
_V
5554a1i 11 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  /\  x  e.  J
)  ->  ( x  i^i  A )  e.  _V )
56 uniexg 6602 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  U. J  e.  _V )
5720, 56syl 17 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  U. J  e.  _V )
58 simp1r 1030 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  A  C_  X
)
5958, 5syl6sseq 3516 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  A  C_  U. J
)
6057, 59ssexd 4572 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  A  e.  _V )
61 elrest 15285 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
6220, 60, 61syl2anc 665 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
63 eleq2 2502 . . . . . . . . . 10  |-  ( z  =  ( x  i^i 
A )  ->  ( P  e.  z  <->  P  e.  ( x  i^i  A ) ) )
64 elin 3655 . . . . . . . . . . . 12  |-  ( P  e.  ( x  i^i 
A )  <->  ( P  e.  x  /\  P  e.  A ) )
6564rbaib 914 . . . . . . . . . . 11  |-  ( P  e.  A  ->  ( P  e.  ( x  i^i  A )  <->  P  e.  x ) )
669, 65syl 17 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( P  e.  ( x  i^i  A
)  <->  P  e.  x
) )
6763, 66sylan9bbr 705 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  /\  z  =  ( x  i^i  A ) )  ->  ( P  e.  z  <->  P  e.  x
) )
68 simpr 462 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  /\  z  =  ( x  i^i  A ) )  ->  z  =  ( x  i^i  A ) )
6968imaeq2d 5188 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( ( F  |`  A )
" ( x  i^i 
A ) ) )
70 inss2 3689 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  A
71 resima2 5158 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  A  ->  (
( F  |`  A )
" ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
) )
7270, 71ax-mp 5 . . . . . . . . . . 11  |-  ( ( F  |`  A ) " ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
)
7369, 72syl6eq 2486 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( F " ( x  i^i  A ) ) )
7473sseq1d 3497 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  /\  z  =  ( x  i^i  A ) )  ->  ( (
( F  |`  A )
" z )  C_  y 
<->  ( F " (
x  i^i  A )
)  C_  y )
)
7567, 74anbi12d 715 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  /\  z  =  ( x  i^i  A ) )  ->  ( ( P  e.  z  /\  ( ( F  |`  A ) " z
)  C_  y )  <->  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y ) ) )
7655, 62, 75rexxfr2d 4639 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
7752, 76bitr4d 259 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y )  <->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
7813, 77imbi12d 321 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  <->  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
7978ralbidv 2871 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  <->  A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
80 simp3 1007 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  K  e.  Top )
8158, 9sseldd 3471 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  P  e.  X
)
82 cnprest.2 . . . . . . . 8  |-  Y  = 
U. K
835, 82iscnp2 20186 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
8483baib 911 . . . . . 6  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
8520, 80, 81, 84syl3anc 1264 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
86 simp2r 1032 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  F : X --> Y )
8786biantrurd 510 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
8885, 87bitr4d 259 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
895toptopon 19879 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
9020, 89sylib 199 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  J  e.  (TopOn `  X ) )
91 resttopon 20108 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
9290, 58, 91syl2anc 665 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( Jt  A )  e.  (TopOn `  A
) )
9382toptopon 19879 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
9480, 93sylib 199 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  K  e.  (TopOn `  Y ) )
95 iscnp 20184 . . . . . 6  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  Y )  /\  P  e.  A
)  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
9692, 94, 9, 95syl3anc 1264 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
9786, 58fssresd 5767 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( F  |`  A ) : A --> Y )
9897biantrurd 510 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
9996, 98bitr4d 259 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
10079, 88, 993bitr4d 288 . . 3  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
) )
1011003expia 1207 . 2  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( K  e.  Top  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
) ) )
1022, 4, 101pm5.21ndd 355 1  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783   _Vcvv 3087    i^i cin 3441    C_ wss 3442   U.cuni 4222    |` cres 4856   "cima 4857   -->wf 5597   ` cfv 5601  (class class class)co 6305   ↾t crest 15278   Topctop 19848  TopOnctopon 19849   intcnt 19963    CnP ccnp 20172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-fin 7581  df-fi 7931  df-rest 15280  df-topgen 15301  df-top 19852  df-bases 19853  df-topon 19854  df-ntr 19966  df-cnp 20175
This theorem is referenced by:  limcres  22718  dvcnvrelem2  22847  psercn  23246  abelth  23261  cxpcn3  23553  efrlim  23760  cvmlift2lem11  29824  cvmlift2lem12  29825  cvmlift3lem7  29836  cncfuni  37336  cncfiooicclem1  37343  dirkercncflem4  37537  fourierdlem62  37600
  Copyright terms: Public domain W3C validator