MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnplimc Structured version   Unicode version

Theorem cnplimc 21490
Description: A function is continuous at  B iff its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnplimc.k  |-  K  =  ( TopOpen ` fld )
cnplimc.j  |-  J  =  ( Kt  A )
Assertion
Ref Expression
cnplimc  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) ) )

Proof of Theorem cnplimc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnplimc.j . . . . 5  |-  J  =  ( Kt  A )
2 cnplimc.k . . . . . . 7  |-  K  =  ( TopOpen ` fld )
32cnfldtopon 20489 . . . . . 6  |-  K  e.  (TopOn `  CC )
4 simpl 457 . . . . . 6  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  A  C_  CC )
5 resttopon 18892 . . . . . 6  |-  ( ( K  e.  (TopOn `  CC )  /\  A  C_  CC )  ->  ( Kt  A )  e.  (TopOn `  A ) )
63, 4, 5sylancr 663 . . . . 5  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( Kt  A )  e.  (TopOn `  A ) )
71, 6syl5eqel 2544 . . . 4  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  J  e.  (TopOn `  A )
)
8 cnpf2 18981 . . . . 5  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )  /\  F  e.  (
( J  CnP  K
) `  B )
)  ->  F : A
--> CC )
983expia 1190 . . . 4  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )
)  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
107, 3, 9sylancl 662 . . 3  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
1110pm4.71rd 635 . 2  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  F  e.  ( ( J  CnP  K ) `  B ) ) ) )
12 simpr 461 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  F : A
--> CC )
13 simplr 754 . . . . . . . . . 10  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  A )
1413snssd 4121 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  { B }  C_  A )
15 ssequn2 3632 . . . . . . . . 9  |-  ( { B }  C_  A  <->  ( A  u.  { B } )  =  A )
1614, 15sylib 196 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( A  u.  { B }
)  =  A )
1716feq2d 5650 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F : ( A  u.  { B } ) --> CC  <->  F : A --> CC ) )
1812, 17mpbird 232 . . . . . 6  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  F :
( A  u.  { B } ) --> CC )
1918feqmptd 5848 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  F  =  ( x  e.  ( A  u.  { B } )  |->  ( F `
 x ) ) )
2016oveq2d 6211 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( Kt  ( A  u.  { B } ) )  =  ( Kt  A ) )
2120, 1syl6reqr 2512 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  J  =  ( Kt  ( A  u.  { B } ) ) )
2221oveq1d 6210 . . . . . 6  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( J  CnP  K )  =  ( ( Kt  ( A  u.  { B }
) )  CnP  K
) )
2322fveq1d 5796 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( ( J  CnP  K ) `
 B )  =  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) )
2419, 23eleq12d 2534 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( x  e.  ( A  u.  { B } )  |->  ( F `
 x ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
25 eqid 2452 . . . . 5  |-  ( Kt  ( A  u.  { B } ) )  =  ( Kt  ( A  u.  { B } ) )
26 ifid 3929 . . . . . . 7  |-  if ( x  =  B , 
( F `  x
) ,  ( F `
 x ) )  =  ( F `  x )
27 fveq2 5794 . . . . . . . . 9  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
2827adantl 466 . . . . . . . 8  |-  ( ( x  e.  ( A  u.  { B }
)  /\  x  =  B )  ->  ( F `  x )  =  ( F `  B ) )
2928ifeq1da 3922 . . . . . . 7  |-  ( x  e.  ( A  u.  { B } )  ->  if ( x  =  B ,  ( F `  x ) ,  ( F `  x ) )  =  if ( x  =  B , 
( F `  B
) ,  ( F `
 x ) ) )
3026, 29syl5eqr 2507 . . . . . 6  |-  ( x  e.  ( A  u.  { B } )  -> 
( F `  x
)  =  if ( x  =  B , 
( F `  B
) ,  ( F `
 x ) ) )
3130mpteq2ia 4477 . . . . 5  |-  ( x  e.  ( A  u.  { B } )  |->  ( F `  x ) )  =  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  ( F `  B ) ,  ( F `  x ) ) )
32 simpll 753 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  A  C_  CC )
3332, 13sseldd 3460 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  CC )
3425, 2, 31, 12, 32, 33ellimc 21476 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( ( F `  B )  e.  ( F lim CC  B )  <->  ( x  e.  ( A  u.  { B } )  |->  ( F `
 x ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
3524, 34bitr4d 256 . . 3  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F `  B )  e.  ( F lim CC  B ) ) )
3635pm5.32da 641 . 2  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  (
( F : A --> CC  /\  F  e.  ( ( J  CnP  K
) `  B )
)  <->  ( F : A
--> CC  /\  ( F `
 B )  e.  ( F lim CC  B
) ) ) )
3711, 36bitrd 253 1  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    u. cun 3429    C_ wss 3431   ifcif 3894   {csn 3980    |-> cmpt 4453   -->wf 5517   ` cfv 5521  (class class class)co 6195   CCcc 9386   ↾t crest 14473   TopOpenctopn 14474  ℂfldccnfld 17938  TopOnctopon 18626    CnP ccnp 18956   lim CC climc 21465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-pre-sup 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-map 7321  df-pm 7322  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-fi 7767  df-sup 7797  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-5 10489  df-6 10490  df-7 10491  df-8 10492  df-9 10493  df-10 10494  df-n0 10686  df-z 10753  df-dec 10862  df-uz 10968  df-q 11060  df-rp 11098  df-xneg 11195  df-xadd 11196  df-xmul 11197  df-fz 11550  df-seq 11919  df-exp 11978  df-cj 12701  df-re 12702  df-im 12703  df-sqr 12837  df-abs 12838  df-struct 14289  df-ndx 14290  df-slot 14291  df-base 14292  df-plusg 14365  df-mulr 14366  df-starv 14367  df-tset 14371  df-ple 14372  df-ds 14374  df-unif 14375  df-rest 14475  df-topn 14476  df-topgen 14496  df-psmet 17929  df-xmet 17930  df-met 17931  df-bl 17932  df-mopn 17933  df-cnfld 17939  df-top 18630  df-bases 18632  df-topon 18633  df-topsp 18634  df-cnp 18959  df-xms 20022  df-ms 20023  df-limc 21469
This theorem is referenced by:  cnlimc  21491  dvcnp2  21522  dvmulbr  21541  dvcobr  21548
  Copyright terms: Public domain W3C validator