MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf2 Structured version   Unicode version

Theorem cnpflf2 21007
Description:  F is continuous at point  A iff a limit of  F when  x tends to  A is  ( F `  A ). Proposition 9 of [BourbakiTop1] p. TG I.50. (Contributed by FL, 29-May-2011.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
cnpflf2.3  |-  L  =  ( ( nei `  J
) `  { A } )
Assertion
Ref Expression
cnpflf2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) ) ) )

Proof of Theorem cnpflf2
Dummy variables  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnpf2 20258 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  A )
)  ->  F : X
--> Y )
213expa 1206 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
323adantl3 1164 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
4 simpl1 1009 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  J  e.  (TopOn `  X ) )
5 simpl3 1011 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  X )
6 neiflim 20981 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  ( J  fLim  (
( nei `  J
) `  { A } ) ) )
7 cnpflf2.3 . . . . . . 7  |-  L  =  ( ( nei `  J
) `  { A } )
87oveq2i 6314 . . . . . 6  |-  ( J 
fLim  L )  =  ( J  fLim  ( ( nei `  J ) `  { A } ) )
96, 8syl6eleqr 2522 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  ( J  fLim  L
) )
104, 5, 9syl2anc 666 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  ( J  fLim  L ) )
11 simpr 463 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) )
12 cnpflfi 21006 . . . 4  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) )
1310, 11, 12syl2anc 666 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) )
143, 13jca 535 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  L ) `  F ) ) )
15 simpl1 1009 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  J  e.  (TopOn `  X )
)
16 topontop 19933 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1715, 16syl 17 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  J  e.  Top )
18 simpl3 1011 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  A  e.  X )
19 toponuni 19934 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2015, 19syl 17 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  X  =  U. J )
2118, 20eleqtrd 2513 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  A  e.  U. J )
227eleq2i 2501 . . . . . . . . . . . 12  |-  ( z  e.  L  <->  z  e.  ( ( nei `  J
) `  { A } ) )
23 eqid 2423 . . . . . . . . . . . . 13  |-  U. J  =  U. J
2423isneip 20113 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  A  e.  U. J )  ->  ( z  e.  ( ( nei `  J
) `  { A } )  <->  ( z  C_ 
U. J  /\  E. v  e.  J  ( A  e.  v  /\  v  C_  z ) ) ) )
2522, 24syl5bb 261 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  A  e.  U. J )  ->  ( z  e.  L  <->  ( z  C_  U. J  /\  E. v  e.  J  ( A  e.  v  /\  v  C_  z ) ) ) )
2617, 21, 25syl2anc 666 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
z  e.  L  <->  ( z  C_ 
U. J  /\  E. v  e.  J  ( A  e.  v  /\  v  C_  z ) ) ) )
27 imass2 5221 . . . . . . . . . . . . . . 15  |-  ( v 
C_  z  ->  ( F " v )  C_  ( F " z ) )
28 sstr2 3472 . . . . . . . . . . . . . . . 16  |-  ( ( F " v ) 
C_  ( F "
z )  ->  (
( F " z
)  C_  u  ->  ( F " v ) 
C_  u ) )
2928com12 33 . . . . . . . . . . . . . . 15  |-  ( ( F " z ) 
C_  u  ->  (
( F " v
)  C_  ( F " z )  ->  ( F " v )  C_  u ) )
3027, 29syl5 34 . . . . . . . . . . . . . 14  |-  ( ( F " z ) 
C_  u  ->  (
v  C_  z  ->  ( F " v ) 
C_  u ) )
3130anim2d 568 . . . . . . . . . . . . 13  |-  ( ( F " z ) 
C_  u  ->  (
( A  e.  v  /\  v  C_  z
)  ->  ( A  e.  v  /\  ( F " v )  C_  u ) ) )
3231reximdv 2900 . . . . . . . . . . . 12  |-  ( ( F " z ) 
C_  u  ->  ( E. v  e.  J  ( A  e.  v  /\  v  C_  z )  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) )
3332com12 33 . . . . . . . . . . 11  |-  ( E. v  e.  J  ( A  e.  v  /\  v  C_  z )  -> 
( ( F "
z )  C_  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) )
3433adantl 468 . . . . . . . . . 10  |-  ( ( z  C_  U. J  /\  E. v  e.  J  ( A  e.  v  /\  v  C_  z ) )  ->  ( ( F
" z )  C_  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) )
3526, 34syl6bi 232 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
z  e.  L  -> 
( ( F "
z )  C_  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) ) )
3635rexlimdv 2916 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( E. z  e.  L  ( F " z ) 
C_  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v )  C_  u ) ) )
3736imim2d 55 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z ) 
C_  u )  -> 
( ( F `  A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) ) )
3837ralimdv 2836 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z ) 
C_  u )  ->  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) ) )
39 simpr 463 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  F : X --> Y )
4038, 39jctild 546 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z ) 
C_  u )  -> 
( F : X --> Y  /\  A. u  e.  K  ( ( F `
 A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
4140adantld 469 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( ( F `  A )  e.  Y  /\  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z ) 
C_  u ) )  ->  ( F : X
--> Y  /\  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
42 simpl2 1010 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  K  e.  (TopOn `  Y )
)
4318snssd 4143 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  { A }  C_  X )
44 snnzg 4115 . . . . . . . 8  |-  ( A  e.  X  ->  { A }  =/=  (/) )
4518, 44syl 17 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  { A }  =/=  (/) )
46 neifil 20887 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  { A }  C_  X  /\  { A }  =/=  (/) )  -> 
( ( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
4715, 43, 45, 46syl3anc 1265 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
487, 47syl5eqel 2515 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  L  e.  ( Fil `  X
) )
49 isflf 21000 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  L  e.  ( Fil `  X
)  /\  F : X
--> Y )  ->  (
( F `  A
)  e.  ( ( K  fLimf  L ) `  F )  <->  ( ( F `  A )  e.  Y  /\  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z )  C_  u
) ) ) )
5042, 48, 39, 49syl3anc 1265 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( F `  A
)  e.  ( ( K  fLimf  L ) `  F )  <->  ( ( F `  A )  e.  Y  /\  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z )  C_  u
) ) ) )
51 iscnp 20245 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. u  e.  K  ( ( F `
 A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
5251adantr 467 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <->  ( F : X --> Y  /\  A. u  e.  K  (
( F `  A
)  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
5341, 50, 523imtr4d 272 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( F `  A
)  e.  ( ( K  fLimf  L ) `  F )  ->  F  e.  ( ( J  CnP  K ) `  A ) ) )
5453impr 624 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  ( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  L ) `  F ) ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) )
5514, 54impbida 841 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619   A.wral 2776   E.wrex 2777    C_ wss 3437   (/)c0 3762   {csn 3997   U.cuni 4217   "cima 4854   -->wf 5595   ` cfv 5599  (class class class)co 6303   Topctop 19909  TopOnctopon 19910   neicnei 20105    CnP ccnp 20233   Filcfil 20852    fLim cflim 20941    fLimf cflf 20942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-1st 6805  df-2nd 6806  df-map 7480  df-fbas 18960  df-fg 18961  df-top 19913  df-topon 19915  df-ntr 20027  df-nei 20106  df-cnp 20236  df-fil 20853  df-fm 20945  df-flim 20946  df-flf 20947
This theorem is referenced by:  cnpflf  21008
  Copyright terms: Public domain W3C validator