MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcfi Structured version   Unicode version

Theorem cnpfcfi 20831
Description: Lemma for cnpfcf 20832. If a function is continuous at a point, it respects clustering there. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcfi  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )

Proof of Theorem cnpfcfi
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp2 998 . . 3  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  ( J  fClus  L ) )
2 eqid 2402 . . . . . 6  |-  U. J  =  U. J
32fclsfil 20801 . . . . 5  |-  ( A  e.  ( J  fClus  L )  ->  L  e.  ( Fil `  U. J
) )
433ad2ant2 1019 . . . 4  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  L  e.  ( Fil `  U. J
) )
5 fclsfnflim 20818 . . . 4  |-  ( L  e.  ( Fil `  U. J )  ->  ( A  e.  ( J  fClus  L )  <->  E. f  e.  ( Fil `  U. J ) ( L 
C_  f  /\  A  e.  ( J  fLim  f
) ) ) )
64, 5syl 17 . . 3  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  ( J  fClus  L )  <->  E. f  e.  ( Fil `  U. J ) ( L  C_  f  /\  A  e.  ( J  fLim  f ) ) ) )
71, 6mpbid 210 . 2  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  E. f  e.  ( Fil `  U. J ) ( L 
C_  f  /\  A  e.  ( J  fLim  f
) ) )
8 simpl1 1000 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  K  e.  Top )
9 eqid 2402 . . . . . . 7  |-  U. K  =  U. K
109toptopon 19724 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 196 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  K  e.  (TopOn `  U. K ) )
12 simprl 756 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  f  e.  ( Fil `  U. J
) )
132, 9cnpf 20039 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  F : U. J --> U. K
)
14133ad2ant3 1020 . . . . . 6  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : U. J --> U. K )
1514adantr 463 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  F : U. J
--> U. K )
16 flfssfcf 20829 . . . . 5  |-  ( ( K  e.  (TopOn `  U. K )  /\  f  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fLimf  f ) `  F )  C_  (
( K  fClusf  f ) `
 F ) )
1711, 12, 15, 16syl3anc 1230 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fLimf  f ) `  F
)  C_  ( ( K  fClusf  f ) `  F ) )
189topopn 19705 . . . . . . . 8  |-  ( K  e.  Top  ->  U. K  e.  K )
198, 18syl 17 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  U. K  e.  K
)
204adantr 463 . . . . . . . 8  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  e.  ( Fil `  U. J
) )
21 filfbas 20639 . . . . . . . 8  |-  ( L  e.  ( Fil `  U. J )  ->  L  e.  ( fBas `  U. J ) )
2220, 21syl 17 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  e.  (
fBas `  U. J ) )
23 fmfil 20735 . . . . . . 7  |-  ( ( U. K  e.  K  /\  L  e.  ( fBas `  U. J )  /\  F : U. J
--> U. K )  -> 
( ( U. K  FilMap  F ) `  L
)  e.  ( Fil `  U. K ) )
2419, 22, 15, 23syl3anc 1230 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( U. K  FilMap  F ) `  L )  e.  ( Fil `  U. K
) )
25 filfbas 20639 . . . . . . . 8  |-  ( f  e.  ( Fil `  U. J )  ->  f  e.  ( fBas `  U. J ) )
2625ad2antrl 726 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  f  e.  (
fBas `  U. J ) )
27 simprrl 766 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  C_  f
)
28 fmss 20737 . . . . . . 7  |-  ( ( ( U. K  e.  K  /\  L  e.  ( fBas `  U. J )  /\  f  e.  ( fBas `  U. J ) )  /\  ( F : U. J --> U. K  /\  L  C_  f ) )  -> 
( ( U. K  FilMap  F ) `  L
)  C_  ( ( U. K  FilMap  F ) `
 f ) )
2919, 22, 26, 15, 27, 28syl32anc 1238 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( U. K  FilMap  F ) `  L )  C_  (
( U. K  FilMap  F ) `  f ) )
30 fclsss2 20814 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  (
( U. K  FilMap  F ) `  L )  e.  ( Fil `  U. K )  /\  (
( U. K  FilMap  F ) `  L ) 
C_  ( ( U. K  FilMap  F ) `  f ) )  -> 
( K  fClus  ( ( U. K  FilMap  F ) `
 f ) ) 
C_  ( K  fClus  ( ( U. K  FilMap  F ) `  L ) ) )
3111, 24, 29, 30syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( K  fClus  ( ( U. K  FilMap  F ) `  f ) )  C_  ( K  fClus  ( ( U. K  FilMap  F ) `  L
) ) )
32 fcfval 20824 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  f  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fClusf  f ) `  F )  =  ( K  fClus  ( ( U. K  FilMap  F ) `
 f ) ) )
3311, 12, 15, 32syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  f ) `  F
)  =  ( K 
fClus  ( ( U. K  FilMap  F ) `  f
) ) )
34 fcfval 20824 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  L  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fClusf  L ) `  F )  =  ( K  fClus  ( ( U. K  FilMap  F ) `
 L ) ) )
3511, 20, 15, 34syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  L ) `  F
)  =  ( K 
fClus  ( ( U. K  FilMap  F ) `  L
) ) )
3631, 33, 353sstr4d 3484 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  f ) `  F
)  C_  ( ( K  fClusf  L ) `  F ) )
3717, 36sstrd 3451 . . 3  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fLimf  f ) `  F
)  C_  ( ( K  fClusf  L ) `  F ) )
38 simprrr 767 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  A  e.  ( J  fLim  f )
)
39 simpl3 1002 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  F  e.  ( ( J  CnP  K
) `  A )
)
40 cnpflfi 20790 . . . 4  |-  ( ( A  e.  ( J 
fLim  f )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  -> 
( F `  A
)  e.  ( ( K  fLimf  f ) `  F ) )
4138, 39, 40syl2anc 659 . . 3  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) )
4237, 41sseldd 3442 . 2  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )
437, 42rexlimddv 2899 1  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   E.wrex 2754    C_ wss 3413   U.cuni 4190   -->wf 5564   ` cfv 5568  (class class class)co 6277   fBascfbas 18724   Topctop 19684  TopOnctopon 19685    CnP ccnp 20017   Filcfil 20636    FilMap cfm 20724    fLim cflim 20725    fLimf cflf 20726    fClus cfcls 20727    fClusf cfcf 20728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-fin 7557  df-fi 7904  df-fbas 18734  df-fg 18735  df-top 19689  df-topon 19692  df-cld 19810  df-ntr 19811  df-cls 19812  df-nei 19890  df-cnp 20020  df-fil 20637  df-fm 20729  df-flim 20730  df-flf 20731  df-fcls 20732  df-fcf 20733
This theorem is referenced by:  cnpfcf  20832
  Copyright terms: Public domain W3C validator