MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcfi Structured version   Unicode version

Theorem cnpfcfi 20269
Description: Lemma for cnpfcf 20270. If a function is continuous at a point, it respects clustering there. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcfi  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )

Proof of Theorem cnpfcfi
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp2 992 . . 3  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  ( J  fClus  L ) )
2 eqid 2460 . . . . . 6  |-  U. J  =  U. J
32fclsfil 20239 . . . . 5  |-  ( A  e.  ( J  fClus  L )  ->  L  e.  ( Fil `  U. J
) )
433ad2ant2 1013 . . . 4  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  L  e.  ( Fil `  U. J
) )
5 fclsfnflim 20256 . . . 4  |-  ( L  e.  ( Fil `  U. J )  ->  ( A  e.  ( J  fClus  L )  <->  E. f  e.  ( Fil `  U. J ) ( L 
C_  f  /\  A  e.  ( J  fLim  f
) ) ) )
64, 5syl 16 . . 3  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  ( J  fClus  L )  <->  E. f  e.  ( Fil `  U. J ) ( L  C_  f  /\  A  e.  ( J  fLim  f ) ) ) )
71, 6mpbid 210 . 2  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  E. f  e.  ( Fil `  U. J ) ( L 
C_  f  /\  A  e.  ( J  fLim  f
) ) )
8 simpl1 994 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  K  e.  Top )
9 eqid 2460 . . . . . . 7  |-  U. K  =  U. K
109toptopon 19194 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 196 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  K  e.  (TopOn `  U. K ) )
12 simprl 755 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  f  e.  ( Fil `  U. J
) )
132, 9cnpf 19507 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  F : U. J --> U. K
)
14133ad2ant3 1014 . . . . . 6  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : U. J --> U. K )
1514adantr 465 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  F : U. J
--> U. K )
16 flfssfcf 20267 . . . . 5  |-  ( ( K  e.  (TopOn `  U. K )  /\  f  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fLimf  f ) `  F )  C_  (
( K  fClusf  f ) `
 F ) )
1711, 12, 15, 16syl3anc 1223 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fLimf  f ) `  F
)  C_  ( ( K  fClusf  f ) `  F ) )
189topopn 19175 . . . . . . . 8  |-  ( K  e.  Top  ->  U. K  e.  K )
198, 18syl 16 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  U. K  e.  K
)
204adantr 465 . . . . . . . 8  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  e.  ( Fil `  U. J
) )
21 filfbas 20077 . . . . . . . 8  |-  ( L  e.  ( Fil `  U. J )  ->  L  e.  ( fBas `  U. J ) )
2220, 21syl 16 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  e.  (
fBas `  U. J ) )
23 fmfil 20173 . . . . . . 7  |-  ( ( U. K  e.  K  /\  L  e.  ( fBas `  U. J )  /\  F : U. J
--> U. K )  -> 
( ( U. K  FilMap  F ) `  L
)  e.  ( Fil `  U. K ) )
2419, 22, 15, 23syl3anc 1223 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( U. K  FilMap  F ) `  L )  e.  ( Fil `  U. K
) )
25 filfbas 20077 . . . . . . . 8  |-  ( f  e.  ( Fil `  U. J )  ->  f  e.  ( fBas `  U. J ) )
2625ad2antrl 727 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  f  e.  (
fBas `  U. J ) )
27 simprrl 763 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  C_  f
)
28 fmss 20175 . . . . . . 7  |-  ( ( ( U. K  e.  K  /\  L  e.  ( fBas `  U. J )  /\  f  e.  ( fBas `  U. J ) )  /\  ( F : U. J --> U. K  /\  L  C_  f ) )  -> 
( ( U. K  FilMap  F ) `  L
)  C_  ( ( U. K  FilMap  F ) `
 f ) )
2919, 22, 26, 15, 27, 28syl32anc 1231 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( U. K  FilMap  F ) `  L )  C_  (
( U. K  FilMap  F ) `  f ) )
30 fclsss2 20252 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  (
( U. K  FilMap  F ) `  L )  e.  ( Fil `  U. K )  /\  (
( U. K  FilMap  F ) `  L ) 
C_  ( ( U. K  FilMap  F ) `  f ) )  -> 
( K  fClus  ( ( U. K  FilMap  F ) `
 f ) ) 
C_  ( K  fClus  ( ( U. K  FilMap  F ) `  L ) ) )
3111, 24, 29, 30syl3anc 1223 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( K  fClus  ( ( U. K  FilMap  F ) `  f ) )  C_  ( K  fClus  ( ( U. K  FilMap  F ) `  L
) ) )
32 fcfval 20262 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  f  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fClusf  f ) `  F )  =  ( K  fClus  ( ( U. K  FilMap  F ) `
 f ) ) )
3311, 12, 15, 32syl3anc 1223 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  f ) `  F
)  =  ( K 
fClus  ( ( U. K  FilMap  F ) `  f
) ) )
34 fcfval 20262 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  L  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fClusf  L ) `  F )  =  ( K  fClus  ( ( U. K  FilMap  F ) `
 L ) ) )
3511, 20, 15, 34syl3anc 1223 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  L ) `  F
)  =  ( K 
fClus  ( ( U. K  FilMap  F ) `  L
) ) )
3631, 33, 353sstr4d 3540 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  f ) `  F
)  C_  ( ( K  fClusf  L ) `  F ) )
3717, 36sstrd 3507 . . 3  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fLimf  f ) `  F
)  C_  ( ( K  fClusf  L ) `  F ) )
38 simprrr 764 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  A  e.  ( J  fLim  f )
)
39 simpl3 996 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  F  e.  ( ( J  CnP  K
) `  A )
)
40 cnpflfi 20228 . . . 4  |-  ( ( A  e.  ( J 
fLim  f )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  -> 
( F `  A
)  e.  ( ( K  fLimf  f ) `  F ) )
4138, 39, 40syl2anc 661 . . 3  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) )
4237, 41sseldd 3498 . 2  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )
437, 42rexlimddv 2952 1  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   E.wrex 2808    C_ wss 3469   U.cuni 4238   -->wf 5575   ` cfv 5579  (class class class)co 6275   fBascfbas 18170   Topctop 19154  TopOnctopon 19155    CnP ccnp 19485   Filcfil 20074    FilMap cfm 20162    fLim cflim 20163    fLimf cflf 20164    fClus cfcls 20165    fClusf cfcf 20166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-fin 7510  df-fi 7860  df-fbas 18180  df-fg 18181  df-top 19159  df-topon 19162  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-cnp 19488  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-fcls 20170  df-fcf 20171
This theorem is referenced by:  cnpfcf  20270
  Copyright terms: Public domain W3C validator