MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcf Structured version   Visualization version   Unicode version

Theorem cnpfcf 21134
Description: A function  F is continuous at point  A iff  F respects cluster points there. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcf  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) ) ) )
Distinct variable groups:    A, f    f, F    f, J    f, K    f, X    f, Y

Proof of Theorem cnpfcf
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnpf2 20343 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  A )
)  ->  F : X
--> Y )
213expa 1231 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
323adantl3 1188 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
4 topontop 20018 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
5 cnpfcfi 21133 . . . . . . . . 9  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  f )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )
653com23 1237 . . . . . . . 8  |-  ( ( K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  A )  /\  A  e.  ( J  fClus  f ) )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )
763expia 1233 . . . . . . 7  |-  ( ( K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  A ) )  -> 
( A  e.  ( J  fClus  f )  ->  ( F `  A
)  e.  ( ( K  fClusf  f ) `  F ) ) )
84, 7sylan 479 . . . . . 6  |-  ( ( K  e.  (TopOn `  Y )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )
98ralrimivw 2810 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )
1093ad2antl2 1193 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )
113, 10jca 541 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) ) )
1211ex 441 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  ->  ( F : X
--> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) ) ) )
13 simplrl 778 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
g  e.  ( Fil `  X ) )
14 filfbas 20941 . . . . . . . . . . . . . 14  |-  ( g  e.  ( Fil `  X
)  ->  g  e.  ( fBas `  X )
)
1513, 14syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
g  e.  ( fBas `  X ) )
16 simprl 772 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  ->  h  e.  ( Fil `  Y ) )
17 simpllr 777 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  ->  F : X --> Y )
18 simprr 774 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
( ( Y  FilMap  F ) `  g ) 
C_  h )
1915, 16, 17, 18fmfnfm 21051 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  ->  E. f  e.  ( Fil `  X ) ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) )
20 r19.29 2912 . . . . . . . . . . . . 13  |-  ( ( A. f  e.  ( Fil `  X ) ( A  e.  ( J  fClus  f )  ->  ( F `  A
)  e.  ( ( K  fClusf  f ) `  F ) )  /\  E. f  e.  ( Fil `  X ) ( g 
C_  f  /\  h  =  ( ( Y 
FilMap  F ) `  f
) ) )  ->  E. f  e.  ( Fil `  X ) ( ( A  e.  ( J  fClus  f )  ->  ( F `  A
)  e.  ( ( K  fClusf  f ) `  F ) )  /\  ( g  C_  f  /\  h  =  (
( Y  FilMap  F ) `
 f ) ) ) )
21 flimfcls 21119 . . . . . . . . . . . . . . . . . . 19  |-  ( J 
fLim  f )  C_  ( J  fClus  f )
22 simpll1 1069 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  J  e.  (TopOn `  X )
)
2322ad2antrr 740 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  J  e.  (TopOn `  X
) )
24 simprl 772 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
f  e.  ( Fil `  X ) )
25 simprrl 782 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
g  C_  f )
26 flimss2 21065 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  g  C_  f )  ->  ( J  fLim  g )  C_  ( J  fLim  f ) )
2723, 24, 25, 26syl3anc 1292 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( J  fLim  g
)  C_  ( J  fLim  f ) )
28 simprr 774 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  A  e.  ( J  fLim  g
) )
2928ad2antrr 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  A  e.  ( J  fLim  g ) )
3027, 29sseldd 3419 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  A  e.  ( J  fLim  f ) )
3121, 30sseldi 3416 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  A  e.  ( J  fClus  f ) )
32 simpll2 1070 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  K  e.  (TopOn `  Y )
)
3332ad2antrr 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  K  e.  (TopOn `  Y
) )
34 simplr 770 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  F : X --> Y )
3534ad2antrr 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  F : X --> Y )
36 fcfval 21126 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  (TopOn `  Y )  /\  f  e.  ( Fil `  X
)  /\  F : X
--> Y )  ->  (
( K  fClusf  f ) `
 F )  =  ( K  fClus  ( ( Y  FilMap  F ) `  f ) ) )
3733, 24, 35, 36syl3anc 1292 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( K  fClusf  f ) `  F )  =  ( K  fClus  ( ( Y  FilMap  F ) `
 f ) ) )
38 simprrr 783 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  h  =  ( ( Y  FilMap  F ) `  f ) )
3938oveq2d 6324 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( K  fClus  h )  =  ( K  fClus  ( ( Y  FilMap  F ) `
 f ) ) )
4037, 39eqtr4d 2508 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( K  fClusf  f ) `  F )  =  ( K  fClus  h ) )
4140eleq2d 2534 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( F `  A )  e.  ( ( K  fClusf  f ) `
 F )  <->  ( F `  A )  e.  ( K  fClus  h )
) )
4241biimpd 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( F `  A )  e.  ( ( K  fClusf  f ) `
 F )  -> 
( F `  A
)  e.  ( K 
fClus  h ) ) )
4331, 42embantd 55 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
4443expr 626 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  f  e.  ( Fil `  X ) )  ->  ( (
g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) )  -> 
( ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
4544com23 80 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  f  e.  ( Fil `  X ) )  ->  ( ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  ( (
g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) )  -> 
( F `  A
)  e.  ( K 
fClus  h ) ) ) )
4645impd 438 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  f  e.  ( Fil `  X ) )  ->  ( (
( A  e.  ( J  fClus  f )  ->  ( F `  A
)  e.  ( ( K  fClusf  f ) `  F ) )  /\  ( g  C_  f  /\  h  =  (
( Y  FilMap  F ) `
 f ) ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
4746rexlimdva 2871 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
( E. f  e.  ( Fil `  X
) ( ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `
 f ) ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
4820, 47syl5 32 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
( ( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  /\  E. f  e.  ( Fil `  X
) ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `
 f ) ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
4919, 48mpan2d 688 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
5049expr 626 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  h  e.  ( Fil `  Y
) )  ->  (
( ( Y  FilMap  F ) `  g ) 
C_  h  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
5150com23 80 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  h  e.  ( Fil `  Y
) )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  ( (
( Y  FilMap  F ) `
 g )  C_  h  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
5251ralrimdva 2812 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  A. h  e.  ( Fil `  Y
) ( ( ( Y  FilMap  F ) `  g )  C_  h  ->  ( F `  A
)  e.  ( K 
fClus  h ) ) ) )
53 toponmax 20020 . . . . . . . . . . . . 13  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
5432, 53syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  Y  e.  K )
55 simprl 772 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  g  e.  ( Fil `  X
) )
5655, 14syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  g  e.  ( fBas `  X
) )
57 fmfil 21037 . . . . . . . . . . . 12  |-  ( ( Y  e.  K  /\  g  e.  ( fBas `  X )  /\  F : X --> Y )  -> 
( ( Y  FilMap  F ) `  g )  e.  ( Fil `  Y
) )
5854, 56, 34, 57syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( Y  FilMap  F ) `
 g )  e.  ( Fil `  Y
) )
59 toponuni 20019 . . . . . . . . . . . . 13  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
6032, 59syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  Y  =  U. K )
6160fveq2d 5883 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  ( Fil `  Y )  =  ( Fil `  U. K ) )
6258, 61eleqtrd 2551 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( Y  FilMap  F ) `
 g )  e.  ( Fil `  U. K ) )
63 eqid 2471 . . . . . . . . . . 11  |-  U. K  =  U. K
6463flimfnfcls 21121 . . . . . . . . . 10  |-  ( ( ( Y  FilMap  F ) `
 g )  e.  ( Fil `  U. K )  ->  (
( F `  A
)  e.  ( K 
fLim  ( ( Y 
FilMap  F ) `  g
) )  <->  A. h  e.  ( Fil `  U. K ) ( ( ( Y  FilMap  F ) `
 g )  C_  h  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
6562, 64syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( F `  A
)  e.  ( K 
fLim  ( ( Y 
FilMap  F ) `  g
) )  <->  A. h  e.  ( Fil `  U. K ) ( ( ( Y  FilMap  F ) `
 g )  C_  h  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
66 flfval 21083 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  Y )  /\  g  e.  ( Fil `  X
)  /\  F : X
--> Y )  ->  (
( K  fLimf  g ) `
 F )  =  ( K  fLim  (
( Y  FilMap  F ) `
 g ) ) )
6732, 55, 34, 66syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( K  fLimf  g ) `
 F )  =  ( K  fLim  (
( Y  FilMap  F ) `
 g ) ) )
6867eleq2d 2534 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( F `  A
)  e.  ( ( K  fLimf  g ) `  F )  <->  ( F `  A )  e.  ( K  fLim  ( ( Y  FilMap  F ) `  g ) ) ) )
6961raleqdv 2979 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  ( A. h  e.  ( Fil `  Y ) ( ( ( Y  FilMap  F ) `  g ) 
C_  h  ->  ( F `  A )  e.  ( K  fClus  h ) )  <->  A. h  e.  ( Fil `  U. K
) ( ( ( Y  FilMap  F ) `  g )  C_  h  ->  ( F `  A
)  e.  ( K 
fClus  h ) ) ) )
7065, 68, 693bitr4d 293 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( F `  A
)  e.  ( ( K  fLimf  g ) `  F )  <->  A. h  e.  ( Fil `  Y
) ( ( ( Y  FilMap  F ) `  g )  C_  h  ->  ( F `  A
)  e.  ( K 
fClus  h ) ) ) )
7152, 70sylibrd 242 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) )
7271expr 626 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  g  e.  ( Fil `  X ) )  -> 
( A  e.  ( J  fLim  g )  ->  ( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) )
7372com23 80 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  g  e.  ( Fil `  X ) )  -> 
( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( A  e.  ( J  fLim  g
)  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) )
7473ralrimdva 2812 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  A. g  e.  ( Fil `  X
) ( A  e.  ( J  fLim  g
)  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) )
7574imdistanda 707 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )  ->  ( F : X --> Y  /\  A. g  e.  ( Fil `  X ) ( A  e.  ( J  fLim  g )  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) ) )
76 cnpflf 21094 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. g  e.  ( Fil `  X
) ( A  e.  ( J  fLim  g
)  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) ) )
7775, 76sylibrd 242 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) ) )
7812, 77impbid 195 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757    C_ wss 3390   U.cuni 4190   -->wf 5585   ` cfv 5589  (class class class)co 6308   fBascfbas 19035   Topctop 19994  TopOnctopon 19995    CnP ccnp 20318   Filcfil 20938    FilMap cfm 21026    fLim cflim 21027    fLimf cflf 21028    fClus cfcls 21029    fClusf cfcf 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-fin 7591  df-fi 7943  df-fbas 19044  df-fg 19045  df-top 19998  df-topon 20000  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-cnp 20321  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-fcls 21034  df-fcf 21035
This theorem is referenced by:  cnfcf  21135
  Copyright terms: Public domain W3C validator