MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpco Structured version   Unicode version

Theorem cnpco 20214
Description: The composition of two continuous functions at point  P is a continuous function at point 
P. Proposition of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cnpco  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F )  e.  ( ( J  CnP  L ) `  P ) )

Proof of Theorem cnpco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 20189 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
21adantr 466 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  J  e.  Top )
3 cnptop2 20190 . . . 4  |-  ( G  e.  ( ( K  CnP  L ) `  ( F `  P ) )  ->  L  e.  Top )
43adantl 467 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  L  e.  Top )
5 eqid 2429 . . . . 5  |-  U. J  =  U. J
65cnprcl 20192 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  U. J )
76adantr 466 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  P  e.  U. J )
82, 4, 73jca 1185 . 2  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( J  e.  Top  /\  L  e.  Top  /\  P  e. 
U. J ) )
9 eqid 2429 . . . . . 6  |-  U. K  =  U. K
10 eqid 2429 . . . . . 6  |-  U. L  =  U. L
119, 10cnpf 20194 . . . . 5  |-  ( G  e.  ( ( K  CnP  L ) `  ( F `  P ) )  ->  G : U. K --> U. L )
1211adantl 467 . . . 4  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  G : U. K --> U. L
)
135, 9cnpf 20194 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  F : U. J --> U. K
)
1413adantr 466 . . . 4  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  F : U. J --> U. K
)
15 fco 5756 . . . 4  |-  ( ( G : U. K --> U. L  /\  F : U. J --> U. K )  -> 
( G  o.  F
) : U. J --> U. L )
1612, 14, 15syl2anc 665 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F ) : U. J --> U. L
)
17 simplr 760 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )
18 simprl 762 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
z  e.  L )
19 fvco3 5958 . . . . . . . . . 10  |-  ( ( F : U. J --> U. K  /\  P  e. 
U. J )  -> 
( ( G  o.  F ) `  P
)  =  ( G `
 ( F `  P ) ) )
2014, 7, 19syl2anc 665 . . . . . . . . 9  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  (
( G  o.  F
) `  P )  =  ( G `  ( F `  P ) ) )
2120adantr 466 . . . . . . . 8  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( ( G  o.  F ) `  P
)  =  ( G `
 ( F `  P ) ) )
22 simprr 764 . . . . . . . 8  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( ( G  o.  F ) `  P
)  e.  z )
2321, 22eqeltrrd 2518 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( G `  ( F `  P )
)  e.  z )
24 cnpimaex 20203 . . . . . . 7  |-  ( ( G  e.  ( ( K  CnP  L ) `
 ( F `  P ) )  /\  z  e.  L  /\  ( G `  ( F `
 P ) )  e.  z )  ->  E. y  e.  K  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) )
2517, 18, 23, 24syl3anc 1264 . . . . . 6  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  E. y  e.  K  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) )
26 simplll 766 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
27 simprl 762 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
y  e.  K )
28 simprrl 772 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( F `  P
)  e.  y )
29 cnpimaex 20203 . . . . . . . 8  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K  /\  ( F `  P )  e.  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
3026, 27, 28, 29syl3anc 1264 . . . . . . 7  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
31 imaco 5360 . . . . . . . . . . 11  |-  ( ( G  o.  F )
" x )  =  ( G " ( F " x ) )
32 imass2 5224 . . . . . . . . . . 11  |-  ( ( F " x ) 
C_  y  ->  ( G " ( F "
x ) )  C_  ( G " y ) )
3331, 32syl5eqss 3514 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  y  ->  (
( G  o.  F
) " x ) 
C_  ( G "
y ) )
34 simprrr 773 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( G " y
)  C_  z )
35 sstr2 3477 . . . . . . . . . . 11  |-  ( ( ( G  o.  F
) " x ) 
C_  ( G "
y )  ->  (
( G " y
)  C_  z  ->  ( ( G  o.  F
) " x ) 
C_  z ) )
3634, 35syl5com 31 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( ( G  o.  F ) "
x )  C_  ( G " y )  -> 
( ( G  o.  F ) " x
)  C_  z )
)
3733, 36syl5 33 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( F "
x )  C_  y  ->  ( ( G  o.  F ) " x
)  C_  z )
)
3837anim2d 567 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( P  e.  x  /\  ( F
" x )  C_  y )  ->  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
) )
3938reximdv 2906 . . . . . . 7  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4030, 39mpd 15 . . . . . 6  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
)
4125, 40rexlimddv 2928 . . . . 5  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
)
4241expr 618 . . . 4  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  z  e.  L
)  ->  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4342ralrimiva 2846 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  A. z  e.  L  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4416, 43jca 534 . 2  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  (
( G  o.  F
) : U. J --> U. L  /\  A. z  e.  L  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) ) )
455, 10iscnp2 20186 . 2  |-  ( ( G  o.  F )  e.  ( ( J  CnP  L ) `  P )  <->  ( ( J  e.  Top  /\  L  e.  Top  /\  P  e. 
U. J )  /\  ( ( G  o.  F ) : U. J
--> U. L  /\  A. z  e.  L  (
( ( G  o.  F ) `  P
)  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
) ) ) )
468, 44, 45sylanbrc 668 1  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F )  e.  ( ( J  CnP  L ) `  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783    C_ wss 3442   U.cuni 4222   "cima 4857    o. ccom 4858   -->wf 5597   ` cfv 5601  (class class class)co 6305   Topctop 19848    CnP ccnp 20172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7482  df-top 19852  df-topon 19854  df-cnp 20175
This theorem is referenced by:  limccnp  22723  limccnp2  22724  efrlim  23760
  Copyright terms: Public domain W3C validator