MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnntr Structured version   Unicode version

Theorem cnntr 20283
Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnntr  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cnntr
StepHypRef Expression
1 cnf2 20257 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> Y )
213expia 1208 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  F : X
--> Y ) )
3 elpwi 3989 . . . . . . 7  |-  ( x  e.  ~P Y  ->  x  C_  Y )
43adantl 468 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_  Y )
5 toponuni 19934 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
65ad2antlr 732 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  Y  =  U. K )
74, 6sseqtrd 3501 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_ 
U. K )
8 eqid 2423 . . . . . . 7  |-  U. K  =  U. K
98cnntri 20279 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  x  C_  U. K )  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )
109expcom 437 . . . . 5  |-  ( x 
C_  U. K  ->  ( F  e.  ( J  Cn  K )  ->  ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
117, 10syl 17 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  ( F  e.  ( J  Cn  K )  ->  ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
1211ralrimdva 2844 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
132, 12jcad 536 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
14 toponss 19936 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  C_  Y )
15 selpw 3987 . . . . . . . . . 10  |-  ( x  e.  ~P Y  <->  x  C_  Y
)
1614, 15sylibr 216 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  e.  ~P Y )
1716ex 436 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  ( x  e.  K  ->  x  e. 
~P Y ) )
1817ad2antlr 732 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  K  ->  x  e.  ~P Y
) )
1918imim1d 79 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  (
x  e.  K  -> 
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
20 topontop 19933 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2120ad3antrrr 735 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  J  e.  Top )
22 cnvimass 5205 . . . . . . . . . . 11  |-  ( `' F " x ) 
C_  dom  F
23 fdm 5748 . . . . . . . . . . . . 13  |-  ( F : X --> Y  ->  dom  F  =  X )
2423ad2antlr 732 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  dom  F  =  X )
25 toponuni 19934 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2625ad3antrrr 735 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  X  =  U. J )
2724, 26eqtrd 2464 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  dom  F  = 
U. J )
2822, 27syl5sseq 3513 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( `' F " x )  C_  U. J )
29 eqid 2423 . . . . . . . . . . 11  |-  U. J  =  U. J
3029ntrss2 20064 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x ) )
3121, 28, 30syl2anc 666 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( int `  J ) `  ( `' F " x ) )  C_  ( `' F " x ) )
32 eqss 3480 . . . . . . . . . 10  |-  ( ( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( (
( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x )  /\  ( `' F " x ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
3332baib 912 . . . . . . . . 9  |-  ( ( ( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x )  ->  (
( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( `' F " x )  C_  ( ( int `  J
) `  ( `' F " x ) ) ) )
3431, 33syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( (
( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( `' F " x )  C_  ( ( int `  J
) `  ( `' F " x ) ) ) )
3529isopn3 20074 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( `' F " x )  e.  J  <->  ( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x ) ) )
3621, 28, 35syl2anc 666 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " x )  e.  J  <->  ( ( int `  J ) `  ( `' F " x ) )  =  ( `' F " x ) ) )
37 topontop 19933 . . . . . . . . . . . 12  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
3837ad3antlr 736 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  K  e.  Top )
39 isopn3i 20090 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  x  e.  K )  ->  ( ( int `  K
) `  x )  =  x )
4038, 39sylancom 672 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( int `  K ) `  x )  =  x )
4140imaeq2d 5185 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( `' F " ( ( int `  K ) `  x
) )  =  ( `' F " x ) )
4241sseq1d 3492 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) )  <->  ( `' F " x )  C_  (
( int `  J
) `  ( `' F " x ) ) ) )
4334, 36, 423bitr4rd 290 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) )  <->  ( `' F " x )  e.  J
) )
4443pm5.74da 692 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  K  ->  ( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  <->  ( x  e.  K  ->  ( `' F " x )  e.  J ) ) )
4519, 44sylibd 218 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  (
x  e.  K  -> 
( `' F "
x )  e.  J
) ) )
4645ralimdv2 2833 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. x  e.  ~P  Y ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) )  ->  A. x  e.  K  ( `' F " x )  e.  J ) )
4746imdistanda 698 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  ( F : X --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
48 iscn 20243 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
4947, 48sylibrd 238 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  F  e.  ( J  Cn  K
) ) )
5013, 49impbid 194 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   A.wral 2776    C_ wss 3437   ~Pcpw 3980   U.cuni 4217   `'ccnv 4850   dom cdm 4851   "cima 4854   -->wf 5595   ` cfv 5599  (class class class)co 6303   Topctop 19909  TopOnctopon 19910   intcnt 20024    Cn ccn 20232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-map 7480  df-top 19913  df-topon 19915  df-ntr 20027  df-cn 20235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator