MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptre Structured version   Unicode version

Theorem cnmptre 20499
Description: Lemma for iirevcn 20502 and related functions. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmptre.1  |-  R  =  ( TopOpen ` fld )
cnmptre.2  |-  J  =  ( ( topGen `  ran  (,) )t  A )
cnmptre.3  |-  K  =  ( ( topGen `  ran  (,) )t  B )
cnmptre.4  |-  ( ph  ->  A  C_  RR )
cnmptre.5  |-  ( ph  ->  B  C_  RR )
cnmptre.6  |-  ( (
ph  /\  x  e.  A )  ->  F  e.  B )
cnmptre.7  |-  ( ph  ->  ( x  e.  CC  |->  F )  e.  ( R  Cn  R ) )
Assertion
Ref Expression
cnmptre  |-  ( ph  ->  ( x  e.  A  |->  F )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    R( x)    F( x)    J( x)    K( x)

Proof of Theorem cnmptre
StepHypRef Expression
1 eqid 2443 . . . . 5  |-  ( Rt  A )  =  ( Rt  A )
2 cnmptre.1 . . . . . . 7  |-  R  =  ( TopOpen ` fld )
32cnfldtopon 20362 . . . . . 6  |-  R  e.  (TopOn `  CC )
43a1i 11 . . . . 5  |-  ( ph  ->  R  e.  (TopOn `  CC ) )
5 cnmptre.4 . . . . . 6  |-  ( ph  ->  A  C_  RR )
6 ax-resscn 9339 . . . . . 6  |-  RR  C_  CC
75, 6syl6ss 3368 . . . . 5  |-  ( ph  ->  A  C_  CC )
8 cnmptre.7 . . . . 5  |-  ( ph  ->  ( x  e.  CC  |->  F )  e.  ( R  Cn  R ) )
91, 4, 7, 8cnmpt1res 19249 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  F )  e.  ( ( Rt  A )  Cn  R
) )
10 eqid 2443 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
112, 10rerest 20381 . . . . . . 7  |-  ( A 
C_  RR  ->  ( Rt  A )  =  ( (
topGen `  ran  (,) )t  A
) )
125, 11syl 16 . . . . . 6  |-  ( ph  ->  ( Rt  A )  =  ( ( topGen `  ran  (,) )t  A
) )
13 cnmptre.2 . . . . . 6  |-  J  =  ( ( topGen `  ran  (,) )t  A )
1412, 13syl6eqr 2493 . . . . 5  |-  ( ph  ->  ( Rt  A )  =  J )
1514oveq1d 6106 . . . 4  |-  ( ph  ->  ( ( Rt  A )  Cn  R )  =  ( J  Cn  R
) )
169, 15eleqtrd 2519 . . 3  |-  ( ph  ->  ( x  e.  A  |->  F )  e.  ( J  Cn  R ) )
17 cnmptre.6 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  F  e.  B )
18 eqid 2443 . . . . . 6  |-  ( x  e.  A  |->  F )  =  ( x  e.  A  |->  F )
1917, 18fmptd 5867 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  F ) : A --> B )
20 frn 5565 . . . . 5  |-  ( ( x  e.  A  |->  F ) : A --> B  ->  ran  ( x  e.  A  |->  F )  C_  B
)
2119, 20syl 16 . . . 4  |-  ( ph  ->  ran  ( x  e.  A  |->  F )  C_  B )
22 cnmptre.5 . . . . 5  |-  ( ph  ->  B  C_  RR )
2322, 6syl6ss 3368 . . . 4  |-  ( ph  ->  B  C_  CC )
24 cnrest2 18890 . . . 4  |-  ( ( R  e.  (TopOn `  CC )  /\  ran  (
x  e.  A  |->  F )  C_  B  /\  B  C_  CC )  -> 
( ( x  e.  A  |->  F )  e.  ( J  Cn  R
)  <->  ( x  e.  A  |->  F )  e.  ( J  Cn  ( Rt  B ) ) ) )
254, 21, 23, 24syl3anc 1218 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  F )  e.  ( J  Cn  R
)  <->  ( x  e.  A  |->  F )  e.  ( J  Cn  ( Rt  B ) ) ) )
2616, 25mpbid 210 . 2  |-  ( ph  ->  ( x  e.  A  |->  F )  e.  ( J  Cn  ( Rt  B ) ) )
272, 10rerest 20381 . . . . 5  |-  ( B 
C_  RR  ->  ( Rt  B )  =  ( (
topGen `  ran  (,) )t  B
) )
2822, 27syl 16 . . . 4  |-  ( ph  ->  ( Rt  B )  =  ( ( topGen `  ran  (,) )t  B
) )
29 cnmptre.3 . . . 4  |-  K  =  ( ( topGen `  ran  (,) )t  B )
3028, 29syl6eqr 2493 . . 3  |-  ( ph  ->  ( Rt  B )  =  K )
3130oveq2d 6107 . 2  |-  ( ph  ->  ( J  Cn  ( Rt  B ) )  =  ( J  Cn  K
) )
3226, 31eleqtrd 2519 1  |-  ( ph  ->  ( x  e.  A  |->  F )  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3328    e. cmpt 4350   ran crn 4841   -->wf 5414   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   (,)cioo 11300   ↾t crest 14359   TopOpenctopn 14360   topGenctg 14376  ℂfldccnfld 17818  TopOnctopon 18499    Cn ccn 18828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fi 7661  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-fz 11438  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-plusg 14251  df-mulr 14252  df-starv 14253  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-rest 14361  df-topn 14362  df-topgen 14382  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cn 18831  df-xms 19895  df-ms 19896
This theorem is referenced by:  iirevcn  20502  iihalf1cn  20504  iihalf2cn  20506  pcoass  20596
  Copyright terms: Public domain W3C validator