MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptlimc Structured version   Unicode version

Theorem cnmptlimc 22586
Description: If  F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnmptlimc.f  |-  ( ph  ->  ( x  e.  A  |->  X )  e.  ( A -cn-> D ) )
cnmptlimc.b  |-  ( ph  ->  B  e.  A )
cnmptlimc.1  |-  ( x  =  B  ->  X  =  Y )
Assertion
Ref Expression
cnmptlimc  |-  ( ph  ->  Y  e.  ( ( x  e.  A  |->  X ) lim CC  B ) )
Distinct variable groups:    x, A    x, B    x, D    x, Y
Allowed substitution hints:    ph( x)    X( x)

Proof of Theorem cnmptlimc
StepHypRef Expression
1 cnmptlimc.b . . 3  |-  ( ph  ->  B  e.  A )
2 cnmptlimc.f . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  X )  e.  ( A -cn-> D ) )
3 cncff 21689 . . . . . 6  |-  ( ( x  e.  A  |->  X )  e.  ( A
-cn-> D )  ->  (
x  e.  A  |->  X ) : A --> D )
42, 3syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  X ) : A --> D )
5 eqid 2402 . . . . . 6  |-  ( x  e.  A  |->  X )  =  ( x  e.  A  |->  X )
65fmpt 6030 . . . . 5  |-  ( A. x  e.  A  X  e.  D  <->  ( x  e.  A  |->  X ) : A --> D )
74, 6sylibr 212 . . . 4  |-  ( ph  ->  A. x  e.  A  X  e.  D )
8 cnmptlimc.1 . . . . . 6  |-  ( x  =  B  ->  X  =  Y )
98eleq1d 2471 . . . . 5  |-  ( x  =  B  ->  ( X  e.  D  <->  Y  e.  D ) )
109rspcv 3156 . . . 4  |-  ( B  e.  A  ->  ( A. x  e.  A  X  e.  D  ->  Y  e.  D ) )
111, 7, 10sylc 59 . . 3  |-  ( ph  ->  Y  e.  D )
128, 5fvmptg 5930 . . 3  |-  ( ( B  e.  A  /\  Y  e.  D )  ->  ( ( x  e.  A  |->  X ) `  B )  =  Y )
131, 11, 12syl2anc 659 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  X ) `  B )  =  Y )
142, 1cnlimci 22585 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  X ) `  B )  e.  ( ( x  e.  A  |->  X ) lim CC  B
) )
1513, 14eqeltrrd 2491 1  |-  ( ph  ->  Y  e.  ( ( x  e.  A  |->  X ) lim CC  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   A.wral 2754    |-> cmpt 4453   -->wf 5565   ` cfv 5569  (class class class)co 6278   -cn->ccncf 21672   lim CC climc 22558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fi 7905  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-fz 11727  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-plusg 14922  df-mulr 14923  df-starv 14924  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-rest 15037  df-topn 15038  df-topgen 15058  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-cnfld 18741  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cn 20021  df-cnp 20022  df-xms 21115  df-ms 21116  df-cncf 21674  df-limc 22562
This theorem is referenced by:  dvidlem  22611  dvcnp2  22615  dvmulbr  22634  dvrec  22650  lhop1lem  22706  lhop2  22708  taylthlem2  23061  fourierdlem62  37319  fourierdlem73  37330  fourierdlem76  37333
  Copyright terms: Public domain W3C validator