MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2vsca Structured version   Unicode version

Theorem cnmpt2vsca 20460
Description: Continuity of scalar multiplication; analogue of cnmpt22f 19939 which cannot be used directly because  .s is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f  |-  F  =  (Scalar `  W )
cnmpt1vsca.t  |-  .x.  =  ( .s `  W )
cnmpt1vsca.j  |-  J  =  ( TopOpen `  W )
cnmpt1vsca.k  |-  K  =  ( TopOpen `  F )
cnmpt1vsca.w  |-  ( ph  ->  W  e. TopMod )
cnmpt1vsca.l  |-  ( ph  ->  L  e.  (TopOn `  X ) )
cnmpt2vsca.m  |-  ( ph  ->  M  e.  (TopOn `  Y ) )
cnmpt2vsca.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )
cnmpt2vsca.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )
Assertion
Ref Expression
cnmpt2vsca  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) )  e.  ( ( L  tX  M
)  Cn  J ) )
Distinct variable groups:    x, y, F    x, J, y    x, K, y    x, L    ph, x, y    x, W, y    x, X, y    x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    .x. ( x, y)    L( y)    M( x, y)

Proof of Theorem cnmpt2vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  (TopOn `  X ) )
2 cnmpt2vsca.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  (TopOn `  Y ) )
3 txtopon 19855 . . . . . . . . . 10  |-  ( ( L  e.  (TopOn `  X )  /\  M  e.  (TopOn `  Y )
)  ->  ( L  tX  M )  e.  (TopOn `  ( X  X.  Y
) ) )
41, 2, 3syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) ) )
5 cnmpt1vsca.w . . . . . . . . . . 11  |-  ( ph  ->  W  e. TopMod )
6 tlmtrg.f . . . . . . . . . . . 12  |-  F  =  (Scalar `  W )
76tlmscatps 20456 . . . . . . . . . . 11  |-  ( W  e. TopMod  ->  F  e.  TopSp )
85, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  F  e.  TopSp )
9 eqid 2467 . . . . . . . . . . 11  |-  ( Base `  F )  =  (
Base `  F )
10 cnmpt1vsca.k . . . . . . . . . . 11  |-  K  =  ( TopOpen `  F )
119, 10istps 19232 . . . . . . . . . 10  |-  ( F  e.  TopSp 
<->  K  e.  (TopOn `  ( Base `  F )
) )
128, 11sylib 196 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  ( Base `  F )
) )
13 cnmpt2vsca.a . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )
14 cnf2 19544 . . . . . . . . 9  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  ( Base `  F ) )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> ( Base `  F
) )
154, 12, 13, 14syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> ( Base `  F
) )
16 eqid 2467 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1716fmpt2 6851 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  ( Base `  F
)  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> ( Base `  F
) )
1815, 17sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  ( Base `  F ) )
1918r19.21bi 2833 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  A  e.  ( Base `  F )
)
2019r19.21bi 2833 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  A  e.  ( Base `  F
) )
21 tlmtps 20453 . . . . . . . . . . 11  |-  ( W  e. TopMod  ->  W  e.  TopSp )
225, 21syl 16 . . . . . . . . . 10  |-  ( ph  ->  W  e.  TopSp )
23 eqid 2467 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
24 cnmpt1vsca.j . . . . . . . . . . 11  |-  J  =  ( TopOpen `  W )
2523, 24istps 19232 . . . . . . . . . 10  |-  ( W  e.  TopSp 
<->  J  e.  (TopOn `  ( Base `  W )
) )
2622, 25sylib 196 . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  ( Base `  W )
) )
27 cnmpt2vsca.b . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )
28 cnf2 19544 . . . . . . . . 9  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) )  /\  J  e.  (TopOn `  ( Base `  W ) )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> ( Base `  W
) )
294, 26, 27, 28syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y ) --> ( Base `  W
) )
30 eqid 2467 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  B )  =  ( x  e.  X ,  y  e.  Y  |->  B )
3130fmpt2 6851 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  ( Base `  W
)  <->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> ( Base `  W
) )
3229, 31sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  B  e.  ( Base `  W ) )
3332r19.21bi 2833 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  B  e.  ( Base `  W )
)
3433r19.21bi 2833 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  B  e.  ( Base `  W
) )
35 eqid 2467 . . . . . 6  |-  ( .sf `  W )  =  ( .sf `  W )
36 cnmpt1vsca.t . . . . . 6  |-  .x.  =  ( .s `  W )
3723, 6, 9, 35, 36scafval 17331 . . . . 5  |-  ( ( A  e.  ( Base `  F )  /\  B  e.  ( Base `  W
) )  ->  ( A ( .sf `  W ) B )  =  ( A  .x.  B ) )
3820, 34, 37syl2anc 661 . . . 4  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  ( A ( .sf `  W ) B )  =  ( A  .x.  B ) )
39383impa 1191 . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( A
( .sf `  W ) B )  =  ( A  .x.  B ) )
4039mpt2eq3dva 6345 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A ( .sf `  W ) B ) )  =  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) ) )
4135, 24, 6, 10vscacn 20451 . . . 4  |-  ( W  e. TopMod  ->  ( .sf `  W )  e.  ( ( K  tX  J
)  Cn  J ) )
425, 41syl 16 . . 3  |-  ( ph  ->  ( .sf `  W )  e.  ( ( K  tX  J
)  Cn  J ) )
431, 2, 13, 27, 42cnmpt22f 19939 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A ( .sf `  W ) B ) )  e.  ( ( L  tX  M )  Cn  J
) )
4440, 43eqeltrrd 2556 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) )  e.  ( ( L  tX  M
)  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    X. cxp 4997   -->wf 5584   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   Basecbs 14490  Scalarcsca 14558   .scvsca 14559   TopOpenctopn 14677   .sfcscaf 17313  TopOnctopon 19190   TopSpctps 19192    Cn ccn 19519    tX ctx 19824  TopModctlm 20423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-map 7422  df-slot 14494  df-base 14495  df-topgen 14699  df-scaf 17315  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cn 19522  df-tx 19826  df-tmd 20334  df-tgp 20335  df-trg 20425  df-tlm 20427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator