MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2t Structured version   Visualization version   Unicode version

Theorem cnmpt2t 20688
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
Assertion
Ref Expression
cnmpt2t  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. A ,  B >. )  e.  ( ( J 
tX  K )  Cn  ( L  tX  M
) ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, M, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt2t
Dummy variables  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5865 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. u ,  v >.
) )
2 df-ov 6293 . . . . . . 7  |-  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. u ,  v
>. )
31, 2syl6eqr 2503 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z )  =  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) )
4 fveq2 5865 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 z )  =  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  <. u ,  v >.
) )
5 df-ov 6293 . . . . . . 7  |-  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )  =  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 <. u ,  v
>. )
64, 5syl6eqr 2503 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 z )  =  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) )
73, 6opeq12d 4174 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >.  =  <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
>. )
87mpt2mpt 6388 . . . 4  |-  ( z  e.  ( X  X.  Y )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. )  =  (
u  e.  X , 
v  e.  Y  |->  <.
( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >. )
9 nfcv 2592 . . . . . . 7  |-  F/_ x u
10 nfmpt21 6358 . . . . . . 7  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
11 nfcv 2592 . . . . . . 7  |-  F/_ x
v
129, 10, 11nfov 6316 . . . . . 6  |-  F/_ x
( u ( x  e.  X ,  y  e.  Y  |->  A ) v )
13 nfmpt21 6358 . . . . . . 7  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  B )
149, 13, 11nfov 6316 . . . . . 6  |-  F/_ x
( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
1512, 14nfop 4182 . . . . 5  |-  F/_ x <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.
16 nfcv 2592 . . . . . . 7  |-  F/_ y
u
17 nfmpt22 6359 . . . . . . 7  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
18 nfcv 2592 . . . . . . 7  |-  F/_ y
v
1916, 17, 18nfov 6316 . . . . . 6  |-  F/_ y
( u ( x  e.  X ,  y  e.  Y  |->  A ) v )
20 nfmpt22 6359 . . . . . . 7  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  B )
2116, 20, 18nfov 6316 . . . . . 6  |-  F/_ y
( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
2219, 21nfop 4182 . . . . 5  |-  F/_ y <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.
23 nfcv 2592 . . . . 5  |-  F/_ u <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >.
24 nfcv 2592 . . . . 5  |-  F/_ v <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >.
25 oveq12 6299 . . . . . 6  |-  ( ( u  =  x  /\  v  =  y )  ->  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v )  =  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) )
26 oveq12 6299 . . . . . 6  |-  ( ( u  =  x  /\  v  =  y )  ->  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )  =  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) )
2725, 26opeq12d 4174 . . . . 5  |-  ( ( u  =  x  /\  v  =  y )  -> 
<. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.  =  <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y )
>. )
2815, 22, 23, 24, 27cbvmpt2 6370 . . . 4  |-  ( u  e.  X ,  v  e.  Y  |->  <. (
u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )
298, 28eqtri 2473 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )
30 cnmpt21.j . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
31 cnmpt21.k . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
32 txtopon 20606 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
3330, 31, 32syl2anc 667 . . . 4  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
34 toponuni 19942 . . . 4  |-  ( ( J  tX  K )  e.  (TopOn `  ( X  X.  Y ) )  ->  ( X  X.  Y )  =  U. ( J  tX  K ) )
35 mpteq1 4483 . . . 4  |-  ( ( X  X.  Y )  =  U. ( J 
tX  K )  -> 
( z  e.  ( X  X.  Y ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( z  e. 
U. ( J  tX  K )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. ) )
3633, 34, 353syl 18 . . 3  |-  ( ph  ->  ( z  e.  ( X  X.  Y ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( z  e. 
U. ( J  tX  K )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. ) )
37 simp2 1009 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  x  e.  X )
38 simp3 1010 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  y  e.  Y )
39 cnmpt21.a . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
40 cntop2 20257 . . . . . . . . . . . 12  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
4139, 40syl 17 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  Top )
42 eqid 2451 . . . . . . . . . . . 12  |-  U. L  =  U. L
4342toptopon 19948 . . . . . . . . . . 11  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
4441, 43sylib 200 . . . . . . . . . 10  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
45 cnf2 20265 . . . . . . . . . 10  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L
) )  ->  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
4633, 44, 39, 45syl3anc 1268 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
47 eqid 2451 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
4847fmpt2 6860 . . . . . . . . 9  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> U. L )
4946, 48sylibr 216 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  U. L )
50 rsp2 2762 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  ->  (
( x  e.  X  /\  y  e.  Y
)  ->  A  e.  U. L ) )
5149, 50syl 17 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  U. L ) )
52513impib 1206 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  A  e.  U. L )
5347ovmpt4g 6419 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
5437, 38, 52, 53syl3anc 1268 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( x
( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
55 cnmpt2t.b . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
56 cntop2 20257 . . . . . . . . . . . 12  |-  ( ( x  e.  X , 
y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M )  ->  M  e.  Top )
5755, 56syl 17 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  Top )
58 eqid 2451 . . . . . . . . . . . 12  |-  U. M  =  U. M
5958toptopon 19948 . . . . . . . . . . 11  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
6057, 59sylib 200 . . . . . . . . . 10  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
61 cnf2 20265 . . . . . . . . . 10  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  M  e.  (TopOn `  U. M )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M
) )  ->  (
x  e.  X , 
y  e.  Y  |->  B ) : ( X  X.  Y ) --> U. M )
6233, 60, 55, 61syl3anc 1268 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y ) --> U. M )
63 eqid 2451 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  B )  =  ( x  e.  X ,  y  e.  Y  |->  B )
6463fmpt2 6860 . . . . . . . . 9  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  U. M  <->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> U. M )
6562, 64sylibr 216 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  B  e.  U. M )
66 rsp2 2762 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  U. M  ->  (
( x  e.  X  /\  y  e.  Y
)  ->  B  e.  U. M ) )
6765, 66syl 17 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  B  e.  U. M ) )
68673impib 1206 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  B  e.  U. M )
6963ovmpt4g 6419 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  Y  /\  B  e.  U. M )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  B ) y )  =  B )
7037, 38, 68, 69syl3anc 1268 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( x
( x  e.  X ,  y  e.  Y  |->  B ) y )  =  B )
7154, 70opeq12d 4174 . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X , 
y  e.  Y  |->  B ) y ) >.  =  <. A ,  B >. )
7271mpt2eq3dva 6355 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )  =  ( x  e.  X , 
y  e.  Y  |->  <. A ,  B >. ) )
7329, 36, 723eqtr3a 2509 . 2  |-  ( ph  ->  ( z  e.  U. ( J  tX  K ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. A ,  B >. ) )
74 eqid 2451 . . . 4  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
75 eqid 2451 . . . 4  |-  ( z  e.  U. ( J 
tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )  =  ( z  e.  U. ( J  tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )
7674, 75txcnmpt 20639 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M
) )  ->  (
z  e.  U. ( J  tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )  e.  ( ( J  tX  K
)  Cn  ( L 
tX  M ) ) )
7739, 55, 76syl2anc 667 . 2  |-  ( ph  ->  ( z  e.  U. ( J  tX  K ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) ) )
7873, 77eqeltrrd 2530 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. A ,  B >. )  e.  ( ( J 
tX  K )  Cn  ( L  tX  M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   <.cop 3974   U.cuni 4198    |-> cmpt 4461    X. cxp 4832   -->wf 5578   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   Topctop 19917  TopOnctopon 19918    Cn ccn 20240    tX ctx 20575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-map 7474  df-topgen 15342  df-top 19921  df-bases 19922  df-topon 19923  df-cn 20243  df-tx 20577
This theorem is referenced by:  cnmpt22  20689  txhmeo  20818  txswaphmeo  20820  txsconlem  29963
  Copyright terms: Public domain W3C validator