MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2t Structured version   Unicode version

Theorem cnmpt2t 19268
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
Assertion
Ref Expression
cnmpt2t  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. A ,  B >. )  e.  ( ( J 
tX  K )  Cn  ( L  tX  M
) ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, M, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt2t
Dummy variables  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5712 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. u ,  v >.
) )
2 df-ov 6115 . . . . . . 7  |-  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. u ,  v
>. )
31, 2syl6eqr 2493 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z )  =  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) )
4 fveq2 5712 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 z )  =  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  <. u ,  v >.
) )
5 df-ov 6115 . . . . . . 7  |-  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )  =  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 <. u ,  v
>. )
64, 5syl6eqr 2493 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 z )  =  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) )
73, 6opeq12d 4088 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >.  =  <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
>. )
87mpt2mpt 6203 . . . 4  |-  ( z  e.  ( X  X.  Y )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. )  =  (
u  e.  X , 
v  e.  Y  |->  <.
( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >. )
9 nfcv 2589 . . . . . . 7  |-  F/_ x u
10 nfmpt21 6174 . . . . . . 7  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
11 nfcv 2589 . . . . . . 7  |-  F/_ x
v
129, 10, 11nfov 6135 . . . . . 6  |-  F/_ x
( u ( x  e.  X ,  y  e.  Y  |->  A ) v )
13 nfmpt21 6174 . . . . . . 7  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  B )
149, 13, 11nfov 6135 . . . . . 6  |-  F/_ x
( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
1512, 14nfop 4096 . . . . 5  |-  F/_ x <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.
16 nfcv 2589 . . . . . . 7  |-  F/_ y
u
17 nfmpt22 6175 . . . . . . 7  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
18 nfcv 2589 . . . . . . 7  |-  F/_ y
v
1916, 17, 18nfov 6135 . . . . . 6  |-  F/_ y
( u ( x  e.  X ,  y  e.  Y  |->  A ) v )
20 nfmpt22 6175 . . . . . . 7  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  B )
2116, 20, 18nfov 6135 . . . . . 6  |-  F/_ y
( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
2219, 21nfop 4096 . . . . 5  |-  F/_ y <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.
23 nfcv 2589 . . . . 5  |-  F/_ u <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >.
24 nfcv 2589 . . . . 5  |-  F/_ v <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >.
25 oveq12 6121 . . . . . 6  |-  ( ( u  =  x  /\  v  =  y )  ->  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v )  =  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) )
26 oveq12 6121 . . . . . 6  |-  ( ( u  =  x  /\  v  =  y )  ->  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )  =  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) )
2725, 26opeq12d 4088 . . . . 5  |-  ( ( u  =  x  /\  v  =  y )  -> 
<. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.  =  <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y )
>. )
2815, 22, 23, 24, 27cbvmpt2 6186 . . . 4  |-  ( u  e.  X ,  v  e.  Y  |->  <. (
u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )
298, 28eqtri 2463 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )
30 cnmpt21.j . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
31 cnmpt21.k . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
32 txtopon 19186 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
3330, 31, 32syl2anc 661 . . . 4  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
34 toponuni 18554 . . . 4  |-  ( ( J  tX  K )  e.  (TopOn `  ( X  X.  Y ) )  ->  ( X  X.  Y )  =  U. ( J  tX  K ) )
35 mpteq1 4393 . . . 4  |-  ( ( X  X.  Y )  =  U. ( J 
tX  K )  -> 
( z  e.  ( X  X.  Y ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( z  e. 
U. ( J  tX  K )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. ) )
3633, 34, 353syl 20 . . 3  |-  ( ph  ->  ( z  e.  ( X  X.  Y ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( z  e. 
U. ( J  tX  K )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. ) )
37 simp2 989 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  x  e.  X )
38 simp3 990 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  y  e.  Y )
39 cnmpt21.a . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
40 cntop2 18867 . . . . . . . . . . . 12  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
4139, 40syl 16 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  Top )
42 eqid 2443 . . . . . . . . . . . 12  |-  U. L  =  U. L
4342toptopon 18560 . . . . . . . . . . 11  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
4441, 43sylib 196 . . . . . . . . . 10  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
45 cnf2 18875 . . . . . . . . . 10  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L
) )  ->  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
4633, 44, 39, 45syl3anc 1218 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
47 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
4847fmpt2 6662 . . . . . . . . 9  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> U. L )
4946, 48sylibr 212 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  U. L )
50 rsp2 2799 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  ->  (
( x  e.  X  /\  y  e.  Y
)  ->  A  e.  U. L ) )
5149, 50syl 16 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  U. L ) )
52513impib 1185 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  A  e.  U. L )
5347ovmpt4g 6234 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
5437, 38, 52, 53syl3anc 1218 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( x
( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
55 cnmpt2t.b . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
56 cntop2 18867 . . . . . . . . . . . 12  |-  ( ( x  e.  X , 
y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M )  ->  M  e.  Top )
5755, 56syl 16 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  Top )
58 eqid 2443 . . . . . . . . . . . 12  |-  U. M  =  U. M
5958toptopon 18560 . . . . . . . . . . 11  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
6057, 59sylib 196 . . . . . . . . . 10  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
61 cnf2 18875 . . . . . . . . . 10  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  M  e.  (TopOn `  U. M )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M
) )  ->  (
x  e.  X , 
y  e.  Y  |->  B ) : ( X  X.  Y ) --> U. M )
6233, 60, 55, 61syl3anc 1218 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y ) --> U. M )
63 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  B )  =  ( x  e.  X ,  y  e.  Y  |->  B )
6463fmpt2 6662 . . . . . . . . 9  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  U. M  <->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> U. M )
6562, 64sylibr 212 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  B  e.  U. M )
66 rsp2 2799 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  U. M  ->  (
( x  e.  X  /\  y  e.  Y
)  ->  B  e.  U. M ) )
6765, 66syl 16 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  B  e.  U. M ) )
68673impib 1185 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  B  e.  U. M )
6963ovmpt4g 6234 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  Y  /\  B  e.  U. M )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  B ) y )  =  B )
7037, 38, 68, 69syl3anc 1218 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( x
( x  e.  X ,  y  e.  Y  |->  B ) y )  =  B )
7154, 70opeq12d 4088 . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X , 
y  e.  Y  |->  B ) y ) >.  =  <. A ,  B >. )
7271mpt2eq3dva 6171 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )  =  ( x  e.  X , 
y  e.  Y  |->  <. A ,  B >. ) )
7329, 36, 723eqtr3a 2499 . 2  |-  ( ph  ->  ( z  e.  U. ( J  tX  K ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. A ,  B >. ) )
74 eqid 2443 . . . 4  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
75 eqid 2443 . . . 4  |-  ( z  e.  U. ( J 
tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )  =  ( z  e.  U. ( J  tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )
7674, 75txcnmpt 19219 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M
) )  ->  (
z  e.  U. ( J  tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )  e.  ( ( J  tX  K
)  Cn  ( L 
tX  M ) ) )
7739, 55, 76syl2anc 661 . 2  |-  ( ph  ->  ( z  e.  U. ( J  tX  K ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) ) )
7873, 77eqeltrrd 2518 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. A ,  B >. )  e.  ( ( J 
tX  K )  Cn  ( L  tX  M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736   <.cop 3904   U.cuni 4112    e. cmpt 4371    X. cxp 4859   -->wf 5435   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114   Topctop 18520  TopOnctopon 18521    Cn ccn 18850    tX ctx 19155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-map 7237  df-topgen 14403  df-top 18525  df-bases 18527  df-topon 18528  df-cn 18853  df-tx 19157
This theorem is referenced by:  cnmpt22  19269  txhmeo  19398  txswaphmeo  19400  txsconlem  27151
  Copyright terms: Public domain W3C validator