MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2pc Structured version   Unicode version

Theorem cnmpt2pc 21163
Description: Piecewise definition of a continuous function on a real interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpt2pc.r  |-  R  =  ( topGen `  ran  (,) )
cnmpt2pc.m  |-  M  =  ( Rt  ( A [,] B ) )
cnmpt2pc.n  |-  N  =  ( Rt  ( B [,] C ) )
cnmpt2pc.o  |-  O  =  ( Rt  ( A [,] C ) )
cnmpt2pc.a  |-  ( ph  ->  A  e.  RR )
cnmpt2pc.c  |-  ( ph  ->  C  e.  RR )
cnmpt2pc.b  |-  ( ph  ->  B  e.  ( A [,] C ) )
cnmpt2pc.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt2pc.q  |-  ( (
ph  /\  ( x  =  B  /\  y  e.  X ) )  ->  D  =  E )
cnmpt2pc.d  |-  ( ph  ->  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  D )  e.  ( ( M  tX  J
)  Cn  K ) )
cnmpt2pc.e  |-  ( ph  ->  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  E )  e.  ( ( N  tX  J
)  Cn  K ) )
Assertion
Ref Expression
cnmpt2pc  |-  ( ph  ->  ( x  e.  ( A [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  e.  ( ( O  tX  J )  Cn  K
) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, K, y    ph, x, y    x, X, y
Allowed substitution hints:    D( x, y)    R( x, y)    E( x, y)    J( x, y)    M( x, y)    N( x, y)    O( x, y)

Proof of Theorem cnmpt2pc
StepHypRef Expression
1 eqid 2467 . 2  |-  U. ( O  tX  J )  = 
U. ( O  tX  J )
2 eqid 2467 . 2  |-  U. K  =  U. K
3 cnmpt2pc.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
4 cnmpt2pc.c . . . . . 6  |-  ( ph  ->  C  e.  RR )
5 iccssre 11602 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A [,] C
)  C_  RR )
63, 4, 5syl2anc 661 . . . . 5  |-  ( ph  ->  ( A [,] C
)  C_  RR )
7 cnmpt2pc.b . . . . . . . 8  |-  ( ph  ->  B  e.  ( A [,] C ) )
86, 7sseldd 3505 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
9 icccld 21009 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
103, 8, 9syl2anc 661 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
11 cnmpt2pc.r . . . . . . 7  |-  R  =  ( topGen `  ran  (,) )
1211fveq2i 5867 . . . . . 6  |-  ( Clsd `  R )  =  (
Clsd `  ( topGen ` 
ran  (,) ) )
1310, 12syl6eleqr 2566 . . . . 5  |-  ( ph  ->  ( A [,] B
)  e.  ( Clsd `  R ) )
14 ssun1 3667 . . . . . 6  |-  ( A [,] B )  C_  ( ( A [,] B )  u.  ( B [,] C ) )
15 iccsplit 11649 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  ( A [,] C
) )  ->  ( A [,] C )  =  ( ( A [,] B )  u.  ( B [,] C ) ) )
163, 4, 7, 15syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( A [,] C
)  =  ( ( A [,] B )  u.  ( B [,] C ) ) )
1714, 16syl5sseqr 3553 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  ( A [,] C ) )
18 uniretop 21004 . . . . . . 7  |-  RR  =  U. ( topGen `  ran  (,) )
1911unieqi 4254 . . . . . . 7  |-  U. R  =  U. ( topGen `  ran  (,) )
2018, 19eqtr4i 2499 . . . . . 6  |-  RR  =  U. R
2120restcldi 19440 . . . . 5  |-  ( ( ( A [,] C
)  C_  RR  /\  ( A [,] B )  e.  ( Clsd `  R
)  /\  ( A [,] B )  C_  ( A [,] C ) )  ->  ( A [,] B )  e.  (
Clsd `  ( Rt  ( A [,] C ) ) ) )
226, 13, 17, 21syl3anc 1228 . . . 4  |-  ( ph  ->  ( A [,] B
)  e.  ( Clsd `  ( Rt  ( A [,] C ) ) ) )
23 cnmpt2pc.o . . . . 5  |-  O  =  ( Rt  ( A [,] C ) )
2423fveq2i 5867 . . . 4  |-  ( Clsd `  O )  =  (
Clsd `  ( Rt  ( A [,] C ) ) )
2522, 24syl6eleqr 2566 . . 3  |-  ( ph  ->  ( A [,] B
)  e.  ( Clsd `  O ) )
26 cnmpt2pc.j . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
27 toponuni 19195 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2826, 27syl 16 . . . 4  |-  ( ph  ->  X  =  U. J
)
29 topontop 19194 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
30 eqid 2467 . . . . . 6  |-  U. J  =  U. J
3130topcld 19302 . . . . 5  |-  ( J  e.  Top  ->  U. J  e.  ( Clsd `  J
) )
3226, 29, 313syl 20 . . . 4  |-  ( ph  ->  U. J  e.  (
Clsd `  J )
)
3328, 32eqeltrd 2555 . . 3  |-  ( ph  ->  X  e.  ( Clsd `  J ) )
34 txcld 19839 . . 3  |-  ( ( ( A [,] B
)  e.  ( Clsd `  O )  /\  X  e.  ( Clsd `  J
) )  ->  (
( A [,] B
)  X.  X )  e.  ( Clsd `  ( O  tX  J ) ) )
3525, 33, 34syl2anc 661 . 2  |-  ( ph  ->  ( ( A [,] B )  X.  X
)  e.  ( Clsd `  ( O  tX  J
) ) )
36 icccld 21009 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B [,] C
)  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
378, 4, 36syl2anc 661 . . . . . 6  |-  ( ph  ->  ( B [,] C
)  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
3837, 12syl6eleqr 2566 . . . . 5  |-  ( ph  ->  ( B [,] C
)  e.  ( Clsd `  R ) )
39 ssun2 3668 . . . . . 6  |-  ( B [,] C )  C_  ( ( A [,] B )  u.  ( B [,] C ) )
4039, 16syl5sseqr 3553 . . . . 5  |-  ( ph  ->  ( B [,] C
)  C_  ( A [,] C ) )
4120restcldi 19440 . . . . 5  |-  ( ( ( A [,] C
)  C_  RR  /\  ( B [,] C )  e.  ( Clsd `  R
)  /\  ( B [,] C )  C_  ( A [,] C ) )  ->  ( B [,] C )  e.  (
Clsd `  ( Rt  ( A [,] C ) ) ) )
426, 38, 40, 41syl3anc 1228 . . . 4  |-  ( ph  ->  ( B [,] C
)  e.  ( Clsd `  ( Rt  ( A [,] C ) ) ) )
4342, 24syl6eleqr 2566 . . 3  |-  ( ph  ->  ( B [,] C
)  e.  ( Clsd `  O ) )
44 txcld 19839 . . 3  |-  ( ( ( B [,] C
)  e.  ( Clsd `  O )  /\  X  e.  ( Clsd `  J
) )  ->  (
( B [,] C
)  X.  X )  e.  ( Clsd `  ( O  tX  J ) ) )
4543, 33, 44syl2anc 661 . 2  |-  ( ph  ->  ( ( B [,] C )  X.  X
)  e.  ( Clsd `  ( O  tX  J
) ) )
4616xpeq1d 5022 . . . 4  |-  ( ph  ->  ( ( A [,] C )  X.  X
)  =  ( ( ( A [,] B
)  u.  ( B [,] C ) )  X.  X ) )
47 xpundir 5052 . . . 4  |-  ( ( ( A [,] B
)  u.  ( B [,] C ) )  X.  X )  =  ( ( ( A [,] B )  X.  X )  u.  (
( B [,] C
)  X.  X ) )
4846, 47syl6eq 2524 . . 3  |-  ( ph  ->  ( ( A [,] C )  X.  X
)  =  ( ( ( A [,] B
)  X.  X )  u.  ( ( B [,] C )  X.  X ) ) )
49 retopon 21005 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
5011, 49eqeltri 2551 . . . . . . 7  |-  R  e.  (TopOn `  RR )
51 resttopon 19428 . . . . . . 7  |-  ( ( R  e.  (TopOn `  RR )  /\  ( A [,] C )  C_  RR )  ->  ( Rt  ( A [,] C ) )  e.  (TopOn `  ( A [,] C ) ) )
5250, 6, 51sylancr 663 . . . . . 6  |-  ( ph  ->  ( Rt  ( A [,] C ) )  e.  (TopOn `  ( A [,] C ) ) )
5323, 52syl5eqel 2559 . . . . 5  |-  ( ph  ->  O  e.  (TopOn `  ( A [,] C ) ) )
54 txtopon 19827 . . . . 5  |-  ( ( O  e.  (TopOn `  ( A [,] C ) )  /\  J  e.  (TopOn `  X )
)  ->  ( O  tX  J )  e.  (TopOn `  ( ( A [,] C )  X.  X
) ) )
5553, 26, 54syl2anc 661 . . . 4  |-  ( ph  ->  ( O  tX  J
)  e.  (TopOn `  ( ( A [,] C )  X.  X
) ) )
56 toponuni 19195 . . . 4  |-  ( ( O  tX  J )  e.  (TopOn `  (
( A [,] C
)  X.  X ) )  ->  ( ( A [,] C )  X.  X )  =  U. ( O  tX  J ) )
5755, 56syl 16 . . 3  |-  ( ph  ->  ( ( A [,] C )  X.  X
)  =  U. ( O  tX  J ) )
5848, 57eqtr3d 2510 . 2  |-  ( ph  ->  ( ( ( A [,] B )  X.  X )  u.  (
( B [,] C
)  X.  X ) )  =  U. ( O  tX  J ) )
59 cnmpt2pc.m . . . . . . . . . 10  |-  M  =  ( Rt  ( A [,] B ) )
6017, 6sstrd 3514 . . . . . . . . . . 11  |-  ( ph  ->  ( A [,] B
)  C_  RR )
61 resttopon 19428 . . . . . . . . . . 11  |-  ( ( R  e.  (TopOn `  RR )  /\  ( A [,] B )  C_  RR )  ->  ( Rt  ( A [,] B ) )  e.  (TopOn `  ( A [,] B ) ) )
6250, 60, 61sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( Rt  ( A [,] B ) )  e.  (TopOn `  ( A [,] B ) ) )
6359, 62syl5eqel 2559 . . . . . . . . 9  |-  ( ph  ->  M  e.  (TopOn `  ( A [,] B ) ) )
64 txtopon 19827 . . . . . . . . 9  |-  ( ( M  e.  (TopOn `  ( A [,] B ) )  /\  J  e.  (TopOn `  X )
)  ->  ( M  tX  J )  e.  (TopOn `  ( ( A [,] B )  X.  X
) ) )
6563, 26, 64syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( M  tX  J
)  e.  (TopOn `  ( ( A [,] B )  X.  X
) ) )
66 cnmpt2pc.d . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  D )  e.  ( ( M  tX  J
)  Cn  K ) )
67 cntop2 19508 . . . . . . . . . 10  |-  ( ( x  e.  ( A [,] B ) ,  y  e.  X  |->  D )  e.  ( ( M  tX  J )  Cn  K )  ->  K  e.  Top )
6866, 67syl 16 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
692toptopon 19201 . . . . . . . . 9  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
7068, 69sylib 196 . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
71 elicc2 11585 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
723, 8, 71syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
7372biimpa 484 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
7473simp3d 1010 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
75743adant3 1016 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B )  /\  y  e.  X
)  ->  x  <_  B )
76 iftrue 3945 . . . . . . . . . . 11  |-  ( x  <_  B  ->  if ( x  <_  B ,  D ,  E )  =  D )
7775, 76syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B )  /\  y  e.  X
)  ->  if (
x  <_  B ,  D ,  E )  =  D )
7877mpt2eq3dva 6343 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  =  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  D ) )
7978, 66eqeltrd 2555 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  e.  ( ( M  tX  J )  Cn  K
) )
80 cnf2 19516 . . . . . . . 8  |-  ( ( ( M  tX  J
)  e.  (TopOn `  ( ( A [,] B )  X.  X
) )  /\  K  e.  (TopOn `  U. K )  /\  ( x  e.  ( A [,] B
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  e.  ( ( M  tX  J )  Cn  K
) )  ->  (
x  e.  ( A [,] B ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( A [,] B )  X.  X ) --> U. K )
8165, 70, 79, 80syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( A [,] B )  X.  X
) --> U. K )
82 eqid 2467 . . . . . . . 8  |-  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E )
)  =  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E )
)
8382fmpt2 6848 . . . . . . 7  |-  ( A. x  e.  ( A [,] B ) A. y  e.  X  if (
x  <_  B ,  D ,  E )  e.  U. K  <->  ( x  e.  ( A [,] B
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( A [,] B )  X.  X
) --> U. K )
8481, 83sylibr 212 . . . . . 6  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K )
85 cnmpt2pc.n . . . . . . . . . 10  |-  N  =  ( Rt  ( B [,] C ) )
8640, 6sstrd 3514 . . . . . . . . . . 11  |-  ( ph  ->  ( B [,] C
)  C_  RR )
87 resttopon 19428 . . . . . . . . . . 11  |-  ( ( R  e.  (TopOn `  RR )  /\  ( B [,] C )  C_  RR )  ->  ( Rt  ( B [,] C ) )  e.  (TopOn `  ( B [,] C ) ) )
8850, 86, 87sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( Rt  ( B [,] C ) )  e.  (TopOn `  ( B [,] C ) ) )
8985, 88syl5eqel 2559 . . . . . . . . 9  |-  ( ph  ->  N  e.  (TopOn `  ( B [,] C ) ) )
90 txtopon 19827 . . . . . . . . 9  |-  ( ( N  e.  (TopOn `  ( B [,] C ) )  /\  J  e.  (TopOn `  X )
)  ->  ( N  tX  J )  e.  (TopOn `  ( ( B [,] C )  X.  X
) ) )
9189, 26, 90syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( N  tX  J
)  e.  (TopOn `  ( ( B [,] C )  X.  X
) ) )
92 elicc2 11585 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
938, 4, 92syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
9493biimpa 484 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( B [,] C ) )  ->  ( x  e.  RR  /\  B  <_  x  /\  x  <_  C
) )
9594simp2d 1009 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( B [,] C ) )  ->  B  <_  x )
9695biantrud 507 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( B [,] C ) )  ->  ( x  <_  B  <->  ( x  <_  B  /\  B  <_  x
) ) )
9794simp1d 1008 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( B [,] C ) )  ->  x  e.  RR )
988adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( B [,] C ) )  ->  B  e.  RR )
9997, 98letri3d 9722 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( B [,] C ) )  ->  ( x  =  B  <->  ( x  <_  B  /\  B  <_  x
) ) )
10096, 99bitr4d 256 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( B [,] C ) )  ->  ( x  <_  B  <->  x  =  B
) )
1011003adant3 1016 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( B [,] C )  /\  y  e.  X
)  ->  ( x  <_  B  <->  x  =  B
) )
102 cnmpt2pc.q . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  =  B  /\  y  e.  X ) )  ->  D  =  E )
103102ancom2s 800 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  e.  X  /\  x  =  B ) )  ->  D  =  E )
104103ifeq1d 3957 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  X  /\  x  =  B ) )  ->  if ( x  <_  B ,  D ,  E )  =  if ( x  <_  B ,  E ,  E ) )
105 ifid 3976 . . . . . . . . . . . . . . 15  |-  if ( x  <_  B ,  E ,  E )  =  E
106104, 105syl6eq 2524 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  X  /\  x  =  B ) )  ->  if ( x  <_  B ,  D ,  E )  =  E )
107106expr 615 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  X )  ->  (
x  =  B  ->  if ( x  <_  B ,  D ,  E )  =  E ) )
1081073adant2 1015 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( B [,] C )  /\  y  e.  X
)  ->  ( x  =  B  ->  if ( x  <_  B ,  D ,  E )  =  E ) )
109101, 108sylbid 215 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( B [,] C )  /\  y  e.  X
)  ->  ( x  <_  B  ->  if (
x  <_  B ,  D ,  E )  =  E ) )
110 iffalse 3948 . . . . . . . . . . 11  |-  ( -.  x  <_  B  ->  if ( x  <_  B ,  D ,  E )  =  E )
111109, 110pm2.61d1 159 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( B [,] C )  /\  y  e.  X
)  ->  if (
x  <_  B ,  D ,  E )  =  E )
112111mpt2eq3dva 6343 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  =  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  E ) )
113 cnmpt2pc.e . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  E )  e.  ( ( N  tX  J
)  Cn  K ) )
114112, 113eqeltrd 2555 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  e.  ( ( N  tX  J )  Cn  K
) )
115 cnf2 19516 . . . . . . . 8  |-  ( ( ( N  tX  J
)  e.  (TopOn `  ( ( B [,] C )  X.  X
) )  /\  K  e.  (TopOn `  U. K )  /\  ( x  e.  ( B [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  e.  ( ( N  tX  J )  Cn  K
) )  ->  (
x  e.  ( B [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( B [,] C )  X.  X ) --> U. K )
11691, 70, 114, 115syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( B [,] C )  X.  X
) --> U. K )
117 eqid 2467 . . . . . . . 8  |-  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E )
)  =  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E )
)
118117fmpt2 6848 . . . . . . 7  |-  ( A. x  e.  ( B [,] C ) A. y  e.  X  if (
x  <_  B ,  D ,  E )  e.  U. K  <->  ( x  e.  ( B [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( B [,] C )  X.  X
) --> U. K )
119116, 118sylibr 212 . . . . . 6  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K )
120 ralun 3686 . . . . . 6  |-  ( ( A. x  e.  ( A [,] B ) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K  /\  A. x  e.  ( B [,] C ) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K )  ->  A. x  e.  (
( A [,] B
)  u.  ( B [,] C ) ) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K )
12184, 119, 120syl2anc 661 . . . . 5  |-  ( ph  ->  A. x  e.  ( ( A [,] B
)  u.  ( B [,] C ) ) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K )
12216raleqdv 3064 . . . . 5  |-  ( ph  ->  ( A. x  e.  ( A [,] C
) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K 
<-> 
A. x  e.  ( ( A [,] B
)  u.  ( B [,] C ) ) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K ) )
123121, 122mpbird 232 . . . 4  |-  ( ph  ->  A. x  e.  ( A [,] C ) A. y  e.  X  if ( x  <_  B ,  D ,  E )  e.  U. K )
124 eqid 2467 . . . . 5  |-  ( x  e.  ( A [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E )
)  =  ( x  e.  ( A [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E )
)
125124fmpt2 6848 . . . 4  |-  ( A. x  e.  ( A [,] C ) A. y  e.  X  if (
x  <_  B ,  D ,  E )  e.  U. K  <->  ( x  e.  ( A [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( A [,] C )  X.  X
) --> U. K )
126123, 125sylib 196 . . 3  |-  ( ph  ->  ( x  e.  ( A [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( A [,] C )  X.  X
) --> U. K )
12757feq2d 5716 . . 3  |-  ( ph  ->  ( ( x  e.  ( A [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : ( ( A [,] C )  X.  X
) --> U. K  <->  ( x  e.  ( A [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : U. ( O  tX  J ) --> U. K
) )
128126, 127mpbid 210 . 2  |-  ( ph  ->  ( x  e.  ( A [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) : U. ( O  tX  J ) --> U. K
)
129 ssid 3523 . . . 4  |-  X  C_  X
130 resmpt2 6382 . . . 4  |-  ( ( ( A [,] B
)  C_  ( A [,] C )  /\  X  C_  X )  ->  (
( x  e.  ( A [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  |`  ( ( A [,] B )  X.  X
) )  =  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) )
13117, 129, 130sylancl 662 . . 3  |-  ( ph  ->  ( ( x  e.  ( A [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  |`  ( ( A [,] B )  X.  X
) )  =  ( x  e.  ( A [,] B ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) )
132 retop 21003 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  e.  Top
13311, 132eqeltri 2551 . . . . . . . . 9  |-  R  e. 
Top
134 ovex 6307 . . . . . . . . 9  |-  ( A [,] C )  e. 
_V
135 resttop 19427 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  ( A [,] C )  e.  _V )  -> 
( Rt  ( A [,] C ) )  e. 
Top )
136133, 134, 135mp2an 672 . . . . . . . 8  |-  ( Rt  ( A [,] C ) )  e.  Top
13723, 136eqeltri 2551 . . . . . . 7  |-  O  e. 
Top
138137a1i 11 . . . . . 6  |-  ( ph  ->  O  e.  Top )
139 ovex 6307 . . . . . . 7  |-  ( A [,] B )  e. 
_V
140139a1i 11 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  e.  _V )
141 txrest 19867 . . . . . 6  |-  ( ( ( O  e.  Top  /\  J  e.  (TopOn `  X ) )  /\  ( ( A [,] B )  e.  _V  /\  X  e.  ( Clsd `  J ) ) )  ->  ( ( O 
tX  J )t  ( ( A [,] B )  X.  X ) )  =  ( ( Ot  ( A [,] B ) )  tX  ( Jt  X ) ) )
142138, 26, 140, 33, 141syl22anc 1229 . . . . 5  |-  ( ph  ->  ( ( O  tX  J )t  ( ( A [,] B )  X.  X ) )  =  ( ( Ot  ( A [,] B ) ) 
tX  ( Jt  X ) ) )
143133a1i 11 . . . . . . . 8  |-  ( ph  ->  R  e.  Top )
144134a1i 11 . . . . . . . 8  |-  ( ph  ->  ( A [,] C
)  e.  _V )
145 restabs 19432 . . . . . . . 8  |-  ( ( R  e.  Top  /\  ( A [,] B ) 
C_  ( A [,] C )  /\  ( A [,] C )  e. 
_V )  ->  (
( Rt  ( A [,] C ) )t  ( A [,] B ) )  =  ( Rt  ( A [,] B ) ) )
146143, 17, 144, 145syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( ( Rt  ( A [,] C ) )t  ( A [,] B ) )  =  ( Rt  ( A [,] B ) ) )
14723oveq1i 6292 . . . . . . 7  |-  ( Ot  ( A [,] B ) )  =  ( ( Rt  ( A [,] C
) )t  ( A [,] B ) )
148146, 147, 593eqtr4g 2533 . . . . . 6  |-  ( ph  ->  ( Ot  ( A [,] B ) )  =  M )
14928oveq2d 6298 . . . . . . 7  |-  ( ph  ->  ( Jt  X )  =  ( Jt 
U. J ) )
15030restid 14685 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  ( Jt  U. J
)  =  J )
15126, 150syl 16 . . . . . . 7  |-  ( ph  ->  ( Jt  U. J )  =  J )
152149, 151eqtrd 2508 . . . . . 6  |-  ( ph  ->  ( Jt  X )  =  J )
153148, 152oveq12d 6300 . . . . 5  |-  ( ph  ->  ( ( Ot  ( A [,] B ) ) 
tX  ( Jt  X ) )  =  ( M 
tX  J ) )
154142, 153eqtrd 2508 . . . 4  |-  ( ph  ->  ( ( O  tX  J )t  ( ( A [,] B )  X.  X ) )  =  ( M  tX  J
) )
155154oveq1d 6297 . . 3  |-  ( ph  ->  ( ( ( O 
tX  J )t  ( ( A [,] B )  X.  X ) )  Cn  K )  =  ( ( M  tX  J )  Cn  K
) )
15679, 131, 1553eltr4d 2570 . 2  |-  ( ph  ->  ( ( x  e.  ( A [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  |`  ( ( A [,] B )  X.  X
) )  e.  ( ( ( O  tX  J )t  ( ( A [,] B )  X.  X ) )  Cn  K ) )
157 resmpt2 6382 . . . 4  |-  ( ( ( B [,] C
)  C_  ( A [,] C )  /\  X  C_  X )  ->  (
( x  e.  ( A [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  |`  ( ( B [,] C )  X.  X
) )  =  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) )
15840, 129, 157sylancl 662 . . 3  |-  ( ph  ->  ( ( x  e.  ( A [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  |`  ( ( B [,] C )  X.  X
) )  =  ( x  e.  ( B [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) ) )
159 ovex 6307 . . . . . . 7  |-  ( B [,] C )  e. 
_V
160159a1i 11 . . . . . 6  |-  ( ph  ->  ( B [,] C
)  e.  _V )
161 txrest 19867 . . . . . 6  |-  ( ( ( O  e.  Top  /\  J  e.  (TopOn `  X ) )  /\  ( ( B [,] C )  e.  _V  /\  X  e.  ( Clsd `  J ) ) )  ->  ( ( O 
tX  J )t  ( ( B [,] C )  X.  X ) )  =  ( ( Ot  ( B [,] C ) )  tX  ( Jt  X ) ) )
162138, 26, 160, 33, 161syl22anc 1229 . . . . 5  |-  ( ph  ->  ( ( O  tX  J )t  ( ( B [,] C )  X.  X ) )  =  ( ( Ot  ( B [,] C ) ) 
tX  ( Jt  X ) ) )
163 restabs 19432 . . . . . . . 8  |-  ( ( R  e.  Top  /\  ( B [,] C ) 
C_  ( A [,] C )  /\  ( A [,] C )  e. 
_V )  ->  (
( Rt  ( A [,] C ) )t  ( B [,] C ) )  =  ( Rt  ( B [,] C ) ) )
164143, 40, 144, 163syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( ( Rt  ( A [,] C ) )t  ( B [,] C ) )  =  ( Rt  ( B [,] C ) ) )
16523oveq1i 6292 . . . . . . 7  |-  ( Ot  ( B [,] C ) )  =  ( ( Rt  ( A [,] C
) )t  ( B [,] C ) )
166164, 165, 853eqtr4g 2533 . . . . . 6  |-  ( ph  ->  ( Ot  ( B [,] C ) )  =  N )
167166, 152oveq12d 6300 . . . . 5  |-  ( ph  ->  ( ( Ot  ( B [,] C ) ) 
tX  ( Jt  X ) )  =  ( N 
tX  J ) )
168162, 167eqtrd 2508 . . . 4  |-  ( ph  ->  ( ( O  tX  J )t  ( ( B [,] C )  X.  X ) )  =  ( N  tX  J
) )
169168oveq1d 6297 . . 3  |-  ( ph  ->  ( ( ( O 
tX  J )t  ( ( B [,] C )  X.  X ) )  Cn  K )  =  ( ( N  tX  J )  Cn  K
) )
170114, 158, 1693eltr4d 2570 . 2  |-  ( ph  ->  ( ( x  e.  ( A [,] C
) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  |`  ( ( B [,] C )  X.  X
) )  e.  ( ( ( O  tX  J )t  ( ( B [,] C )  X.  X ) )  Cn  K ) )
1711, 2, 35, 45, 58, 128, 156, 170paste 19561 1  |-  ( ph  ->  ( x  e.  ( A [,] C ) ,  y  e.  X  |->  if ( x  <_  B ,  D ,  E ) )  e.  ( ( O  tX  J )  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    u. cun 3474    C_ wss 3476   ifcif 3939   U.cuni 4245   class class class wbr 4447    X. cxp 4997   ran crn 5000    |` cres 5001   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   RRcr 9487    <_ cle 9625   (,)cioo 11525   [,]cicc 11528   ↾t crest 14672   topGenctg 14689   Topctop 19161  TopOnctopon 19162   Clsdccld 19283    Cn ccn 19491    tX ctx 19796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-ioo 11529  df-icc 11532  df-rest 14674  df-topgen 14695  df-top 19166  df-bases 19168  df-topon 19169  df-cld 19286  df-cn 19494  df-tx 19798
This theorem is referenced by:  htpycc  21215  pcocn  21252  pcohtpylem  21254  pcopt  21257  pcopt2  21258  pcoass  21259  pcorevlem  21261
  Copyright terms: Public domain W3C validator