MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2k Structured version   Unicode version

Theorem cnmpt2k 19266
Description: The currying of a two-argument function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
cnmpt2k.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt2k.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt2k.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
Assertion
Ref Expression
cnmpt2k  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ko  K ) ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, Y, y
Allowed substitution hints:    A( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt2k
Dummy variables  w  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2584 . . . . 5  |-  F/_ x Y
2 nfcv 2584 . . . . . 6  |-  F/_ x
v
3 nfmpt22 6159 . . . . . 6  |-  F/_ x
( y  e.  Y ,  x  e.  X  |->  A )
4 nfcv 2584 . . . . . 6  |-  F/_ x w
52, 3, 4nfov 6119 . . . . 5  |-  F/_ x
( v ( y  e.  Y ,  x  e.  X  |->  A ) w )
61, 5nfmpt 4385 . . . 4  |-  F/_ x
( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
7 nfcv 2584 . . . 4  |-  F/_ w
( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
8 nfcv 2584 . . . . . . 7  |-  F/_ y
v
9 nfmpt21 6158 . . . . . . 7  |-  F/_ y
( y  e.  Y ,  x  e.  X  |->  A )
10 nfcv 2584 . . . . . . 7  |-  F/_ y
w
118, 9, 10nfov 6119 . . . . . 6  |-  F/_ y
( v ( y  e.  Y ,  x  e.  X  |->  A ) w )
12 nfcv 2584 . . . . . 6  |-  F/_ v
( y ( y  e.  Y ,  x  e.  X  |->  A ) w )
13 oveq1 6103 . . . . . 6  |-  ( v  =  y  ->  (
v ( y  e.  Y ,  x  e.  X  |->  A ) w )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
1411, 12, 13cbvmpt 4387 . . . . 5  |-  ( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) )  =  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
15 oveq2 6104 . . . . . 6  |-  ( w  =  x  ->  (
y ( y  e.  Y ,  x  e.  X  |->  A ) w )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
1615mpteq2dv 4384 . . . . 5  |-  ( w  =  x  ->  (
y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) w ) )  =  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
1714, 16syl5eq 2487 . . . 4  |-  ( w  =  x  ->  (
v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) )  =  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
186, 7, 17cbvmpt 4387 . . 3  |-  ( w  e.  X  |->  ( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
19 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  y  e.  Y )
20 simplr 754 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  x  e.  X )
21 cnmpt2k.k . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
22 cnmpt2k.j . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  (TopOn `  X ) )
23 txtopon 19169 . . . . . . . . . . . 12  |-  ( ( K  e.  (TopOn `  Y )  /\  J  e.  (TopOn `  X )
)  ->  ( K  tX  J )  e.  (TopOn `  ( Y  X.  X
) ) )
2421, 22, 23syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( K  tX  J
)  e.  (TopOn `  ( Y  X.  X
) ) )
25 cnmpt2k.a . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
26 cntop2 18850 . . . . . . . . . . . . 13  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
2725, 26syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  Top )
28 eqid 2443 . . . . . . . . . . . . 13  |-  U. L  =  U. L
2928toptopon 18543 . . . . . . . . . . . 12  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
3027, 29sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
3122, 21, 25cnmptcom 19256 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J
)  Cn  L ) )
32 cnf2 18858 . . . . . . . . . . 11  |-  ( ( ( K  tX  J
)  e.  (TopOn `  ( Y  X.  X
) )  /\  L  e.  (TopOn `  U. L )  /\  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J )  Cn  L
) )  ->  (
y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X ) --> U. L )
3324, 30, 31, 32syl3anc 1218 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X ) --> U. L )
34 eqid 2443 . . . . . . . . . . 11  |-  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( y  e.  Y ,  x  e.  X  |->  A )
3534fmpt2 6646 . . . . . . . . . 10  |-  ( A. y  e.  Y  A. x  e.  X  A  e.  U. L  <->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X
) --> U. L )
3633, 35sylibr 212 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
3736r19.21bi 2819 . . . . . . . 8  |-  ( (
ph  /\  y  e.  Y )  ->  A. x  e.  X  A  e.  U. L )
3837r19.21bi 2819 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Y )  /\  x  e.  X )  ->  A  e.  U. L )
3938an32s 802 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  A  e.  U. L )
4034ovmpt4g 6218 . . . . . 6  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  A )
4119, 20, 39, 40syl3anc 1218 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  (
y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  A )
4241mpteq2dva 4383 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )  =  ( y  e.  Y  |->  A ) )
4342mpteq2dva 4383 . . 3  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  A ) ) )
4418, 43syl5eq 2487 . 2  |-  ( ph  ->  ( w  e.  X  |->  ( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  A ) ) )
45 eqid 2443 . . . . 5  |-  ( w  e.  X  |->  ( v  e.  Y  |->  <. v ,  w >. ) )  =  ( w  e.  X  |->  ( v  e.  Y  |-> 
<. v ,  w >. ) )
4645xkoinjcn 19265 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( w  e.  X  |->  ( v  e.  Y  |->  <. v ,  w >. ) )  e.  ( J  Cn  (
( K  tX  J
)  ^ko  K ) ) )
4722, 21, 46syl2anc 661 . . 3  |-  ( ph  ->  ( w  e.  X  |->  ( v  e.  Y  |-> 
<. v ,  w >. ) )  e.  ( J  Cn  ( ( K 
tX  J )  ^ko  K ) ) )
4833feqmptd 5749 . . . 4  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  ( Y  X.  X )  |->  ( ( y  e.  Y ,  x  e.  X  |->  A ) `  z
) ) )
4948, 31eqeltrrd 2518 . . 3  |-  ( ph  ->  ( z  e.  ( Y  X.  X ) 
|->  ( ( y  e.  Y ,  x  e.  X  |->  A ) `  z ) )  e.  ( ( K  tX  J )  Cn  L
) )
50 fveq2 5696 . . . 4  |-  ( z  =  <. v ,  w >.  ->  ( ( y  e.  Y ,  x  e.  X  |->  A ) `
 z )  =  ( ( y  e.  Y ,  x  e.  X  |->  A ) `  <. v ,  w >. ) )
51 df-ov 6099 . . . 4  |-  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w )  =  ( ( y  e.  Y ,  x  e.  X  |->  A ) `
 <. v ,  w >. )
5250, 51syl6eqr 2493 . . 3  |-  ( z  =  <. v ,  w >.  ->  ( ( y  e.  Y ,  x  e.  X  |->  A ) `
 z )  =  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
5322, 21, 24, 47, 49, 52cnmptk1 19259 . 2  |-  ( ph  ->  ( w  e.  X  |->  ( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )  e.  ( J  Cn  ( L  ^ko  K ) ) )
5444, 53eqeltrrd 2518 1  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ko  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   <.cop 3888   U.cuni 4096    e. cmpt 4355    X. cxp 4843   -->wf 5419   ` cfv 5423  (class class class)co 6096    e. cmpt2 6098   Topctop 18503  TopOnctopon 18504    Cn ccn 18833    tX ctx 19138    ^ko cxko 19139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-fin 7319  df-fi 7666  df-rest 14366  df-topgen 14387  df-top 18508  df-bases 18510  df-topon 18511  df-cn 18836  df-cnp 18837  df-cmp 18995  df-tx 19140  df-xko 19141
This theorem is referenced by:  xkocnv  19392  xkohmeo  19393
  Copyright terms: Public domain W3C validator