MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22f Structured version   Unicode version

Theorem cnmpt22f 19247
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
cnmpt22f.f  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
Assertion
Ref Expression
cnmpt22f  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Distinct variable groups:    x, y, F    x, L, y    ph, x, y    x, X, y    x, M, y    x, N, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt22f
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt21.k . 2  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 cnmpt21.a . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
4 cnmpt2t.b . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
5 cntop2 18844 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
63, 5syl 16 . . 3  |-  ( ph  ->  L  e.  Top )
7 eqid 2442 . . . 4  |-  U. L  =  U. L
87toptopon 18537 . . 3  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
96, 8sylib 196 . 2  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
10 cntop2 18844 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M )  ->  M  e.  Top )
114, 10syl 16 . . 3  |-  ( ph  ->  M  e.  Top )
12 eqid 2442 . . . 4  |-  U. M  =  U. M
1312toptopon 18537 . . 3  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
1411, 13sylib 196 . 2  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
15 txtopon 19163 . . . . . . 7  |-  ( ( L  e.  (TopOn `  U. L )  /\  M  e.  (TopOn `  U. M ) )  ->  ( L  tX  M )  e.  (TopOn `  ( U. L  X.  U. M ) ) )
169, 14, 15syl2anc 661 . . . . . 6  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) ) )
17 cnmpt22f.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
18 cntop2 18844 . . . . . . . 8  |-  ( F  e.  ( ( L 
tX  M )  Cn  N )  ->  N  e.  Top )
1917, 18syl 16 . . . . . . 7  |-  ( ph  ->  N  e.  Top )
20 eqid 2442 . . . . . . . 8  |-  U. N  =  U. N
2120toptopon 18537 . . . . . . 7  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
2219, 21sylib 196 . . . . . 6  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
23 cnf2 18852 . . . . . 6  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) )  /\  N  e.  (TopOn `  U. N )  /\  F  e.  ( ( L  tX  M )  Cn  N
) )  ->  F : ( U. L  X.  U. M ) --> U. N )
2416, 22, 17, 23syl3anc 1218 . . . . 5  |-  ( ph  ->  F : ( U. L  X.  U. M ) --> U. N )
25 ffn 5558 . . . . 5  |-  ( F : ( U. L  X.  U. M ) --> U. N  ->  F  Fn  ( U. L  X.  U. M ) )
2624, 25syl 16 . . . 4  |-  ( ph  ->  F  Fn  ( U. L  X.  U. M ) )
27 fnov 6197 . . . 4  |-  ( F  Fn  ( U. L  X.  U. M )  <->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2826, 27sylib 196 . . 3  |-  ( ph  ->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2928, 17eqeltrrd 2517 . 2  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) )  e.  ( ( L  tX  M )  Cn  N
) )
30 oveq12 6099 . 2  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z F w )  =  ( A F B ) )
311, 2, 3, 4, 9, 14, 29, 30cnmpt22 19246 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   U.cuni 4090    X. cxp 4837    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6090    e. cmpt2 6092   Topctop 18497  TopOnctopon 18498    Cn ccn 18827    tX ctx 19132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-map 7215  df-topgen 14381  df-top 18502  df-bases 18504  df-topon 18505  df-cn 18830  df-tx 19134
This theorem is referenced by:  cnmptcom  19250  cnmpt2plusg  19658  istgp2  19661  cnmpt2vsca  19768  cnmpt2ds  20419  divcn  20443  cnrehmeo  20524  htpycom  20547  htpyco1  20549  htpycc  20551  reparphti  20568  pcohtpylem  20590  cnmpt2ip  20759  cxpcn  22182  vmcn  24093  dipcn  24117  mndpluscn  26355  cvxscon  27131
  Copyright terms: Public domain W3C validator