MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22f Structured version   Unicode version

Theorem cnmpt22f 20468
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
cnmpt22f.f  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
Assertion
Ref Expression
cnmpt22f  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Distinct variable groups:    x, y, F    x, L, y    ph, x, y    x, X, y    x, M, y    x, N, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt22f
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt21.k . 2  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 cnmpt21.a . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
4 cnmpt2t.b . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
5 cntop2 20035 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
63, 5syl 17 . . 3  |-  ( ph  ->  L  e.  Top )
7 eqid 2402 . . . 4  |-  U. L  =  U. L
87toptopon 19726 . . 3  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
96, 8sylib 196 . 2  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
10 cntop2 20035 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M )  ->  M  e.  Top )
114, 10syl 17 . . 3  |-  ( ph  ->  M  e.  Top )
12 eqid 2402 . . . 4  |-  U. M  =  U. M
1312toptopon 19726 . . 3  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
1411, 13sylib 196 . 2  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
15 txtopon 20384 . . . . . . 7  |-  ( ( L  e.  (TopOn `  U. L )  /\  M  e.  (TopOn `  U. M ) )  ->  ( L  tX  M )  e.  (TopOn `  ( U. L  X.  U. M ) ) )
169, 14, 15syl2anc 659 . . . . . 6  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) ) )
17 cnmpt22f.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
18 cntop2 20035 . . . . . . . 8  |-  ( F  e.  ( ( L 
tX  M )  Cn  N )  ->  N  e.  Top )
1917, 18syl 17 . . . . . . 7  |-  ( ph  ->  N  e.  Top )
20 eqid 2402 . . . . . . . 8  |-  U. N  =  U. N
2120toptopon 19726 . . . . . . 7  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
2219, 21sylib 196 . . . . . 6  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
23 cnf2 20043 . . . . . 6  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) )  /\  N  e.  (TopOn `  U. N )  /\  F  e.  ( ( L  tX  M )  Cn  N
) )  ->  F : ( U. L  X.  U. M ) --> U. N )
2416, 22, 17, 23syl3anc 1230 . . . . 5  |-  ( ph  ->  F : ( U. L  X.  U. M ) --> U. N )
25 ffn 5714 . . . . 5  |-  ( F : ( U. L  X.  U. M ) --> U. N  ->  F  Fn  ( U. L  X.  U. M ) )
2624, 25syl 17 . . . 4  |-  ( ph  ->  F  Fn  ( U. L  X.  U. M ) )
27 fnov 6391 . . . 4  |-  ( F  Fn  ( U. L  X.  U. M )  <->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2826, 27sylib 196 . . 3  |-  ( ph  ->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2928, 17eqeltrrd 2491 . 2  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) )  e.  ( ( L  tX  M )  Cn  N
) )
30 oveq12 6287 . 2  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z F w )  =  ( A F B ) )
311, 2, 3, 4, 9, 14, 29, 30cnmpt22 20467 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   U.cuni 4191    X. cxp 4821    Fn wfn 5564   -->wf 5565   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280   Topctop 19686  TopOnctopon 19687    Cn ccn 20018    tX ctx 20353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-map 7459  df-topgen 15058  df-top 19691  df-bases 19693  df-topon 19694  df-cn 20021  df-tx 20355
This theorem is referenced by:  cnmptcom  20471  cnmpt2plusg  20879  istgp2  20882  cnmpt2vsca  20989  cnmpt2ds  21640  divcn  21664  cnrehmeo  21745  htpycom  21768  htpyco1  21770  htpycc  21772  reparphti  21789  pcohtpylem  21811  cnmpt2ip  21980  cxpcn  23415  vmcn  26023  dipcn  26047  mndpluscn  28361  cvxscon  29540
  Copyright terms: Public domain W3C validator