MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt21 Structured version   Unicode version

Theorem cnmpt21 19375
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt21.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt21.b  |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )
cnmpt21.c  |-  ( z  =  A  ->  B  =  C )
Assertion
Ref Expression
cnmpt21  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J  tX  K
)  Cn  M ) )
Distinct variable groups:    z, A    z, J    x, y, z, L    ph, x, y, z   
x, X, y, z   
x, M, y, z   
x, Y, y, z   
z, K    x, Z, y, z    x, B, y   
z, C
Allowed substitution hints:    A( x, y)    B( z)    C( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt21
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6202 . . . . . . . . . 10  |-  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. x ,  y
>. )
2 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  x  e.  X )
3 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
y  e.  Y )
4 cnmpt21.j . . . . . . . . . . . . . . . 16  |-  ( ph  ->  J  e.  (TopOn `  X ) )
5 cnmpt21.k . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
6 txtopon 19295 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
74, 5, 6syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
8 cnmpt21.l . . . . . . . . . . . . . . 15  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
9 cnmpt21.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
10 cnf2 18984 . . . . . . . . . . . . . . 15  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  Z )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> Z )
117, 8, 9, 10syl3anc 1219 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z )
12 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1312fmpt2 6750 . . . . . . . . . . . . . 14  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  Z  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> Z )
1411, 13sylibr 212 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  Z )
15 rsp2 2894 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  Z  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  Z ) )
1614, 15syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  Z ) )
1716imp 429 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  A  e.  Z )
1812ovmpt4g 6322 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  Z )  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
192, 3, 17, 18syl3anc 1219 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
201, 19syl5eqr 2509 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
)  =  A )
2120fveq2d 5802 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
) )  =  ( ( z  e.  Z  |->  B ) `  A
) )
22 cnmpt21.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )
23 cntop2 18976 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Z  |->  B )  e.  ( L  Cn  M )  ->  M  e.  Top )
2422, 23syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  Top )
25 eqid 2454 . . . . . . . . . . . . . . 15  |-  U. M  =  U. M
2625toptopon 18669 . . . . . . . . . . . . . 14  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
2724, 26sylib 196 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
28 cnf2 18984 . . . . . . . . . . . . 13  |-  ( ( L  e.  (TopOn `  Z )  /\  M  e.  (TopOn `  U. M )  /\  ( z  e.  Z  |->  B )  e.  ( L  Cn  M
) )  ->  (
z  e.  Z  |->  B ) : Z --> U. M
)
298, 27, 22, 28syl3anc 1219 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  Z  |->  B ) : Z --> U. M )
30 eqid 2454 . . . . . . . . . . . . 13  |-  ( z  e.  Z  |->  B )  =  ( z  e.  Z  |->  B )
3130fmpt 5972 . . . . . . . . . . . 12  |-  ( A. z  e.  Z  B  e.  U. M  <->  ( z  e.  Z  |->  B ) : Z --> U. M
)
3229, 31sylibr 212 . . . . . . . . . . 11  |-  ( ph  ->  A. z  e.  Z  B  e.  U. M )
3332adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  A. z  e.  Z  B  e.  U. M )
34 cnmpt21.c . . . . . . . . . . . 12  |-  ( z  =  A  ->  B  =  C )
3534eleq1d 2523 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( B  e.  U. M  <->  C  e.  U. M ) )
3635rspcv 3173 . . . . . . . . . 10  |-  ( A  e.  Z  ->  ( A. z  e.  Z  B  e.  U. M  ->  C  e.  U. M ) )
3717, 33, 36sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  C  e.  U. M )
3834, 30fvmptg 5880 . . . . . . . . 9  |-  ( ( A  e.  Z  /\  C  e.  U. M )  ->  ( ( z  e.  Z  |->  B ) `
 A )  =  C )
3917, 37, 38syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  A )  =  C )
4021, 39eqtrd 2495 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
) )  =  C )
41 opelxpi 4978 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
42 fvco3 5876 . . . . . . . 8  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z  /\  <. x ,  y >.  e.  ( X  X.  Y ) )  ->  ( (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. x ,  y >. )  =  ( ( z  e.  Z  |->  B ) `
 ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. x ,  y
>. ) ) )
4311, 41, 42syl2an 477 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( z  e.  Z  |->  B ) `  (
( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >. )
) )
44 df-ov 6202 . . . . . . . 8  |-  ( x ( x  e.  X ,  y  e.  Y  |->  C ) y )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. x ,  y
>. )
45 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  C )  =  ( x  e.  X ,  y  e.  Y  |->  C )
4645ovmpt4g 6322 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  Y  /\  C  e.  U. M )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  C ) y )  =  C )
472, 3, 37, 46syl3anc 1219 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( x ( x  e.  X ,  y  e.  Y  |->  C ) y )  =  C )
4844, 47syl5eqr 2509 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >.
)  =  C )
4940, 43, 483eqtr4d 2505 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
)
5049ralrimivva 2912 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
)
51 nfv 1674 . . . . . 6  |-  F/ u A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
52 nfcv 2616 . . . . . . 7  |-  F/_ x Y
53 nfcv 2616 . . . . . . . . . 10  |-  F/_ x
( z  e.  Z  |->  B )
54 nfmpt21 6261 . . . . . . . . . 10  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
5553, 54nfco 5112 . . . . . . . . 9  |-  F/_ x
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )
56 nfcv 2616 . . . . . . . . 9  |-  F/_ x <. u ,  v >.
5755, 56nffv 5805 . . . . . . . 8  |-  F/_ x
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )
58 nfmpt21 6261 . . . . . . . . 9  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  C )
5958, 56nffv 5805 . . . . . . . 8  |-  F/_ x
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >.
)
6057, 59nfeq 2626 . . . . . . 7  |-  F/ x
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
6152, 60nfral 2886 . . . . . 6  |-  F/ x A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
62 nfv 1674 . . . . . . . 8  |-  F/ v ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
63 nfcv 2616 . . . . . . . . . . 11  |-  F/_ y
( z  e.  Z  |->  B )
64 nfmpt22 6262 . . . . . . . . . . 11  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
6563, 64nfco 5112 . . . . . . . . . 10  |-  F/_ y
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )
66 nfcv 2616 . . . . . . . . . 10  |-  F/_ y <. x ,  v >.
6765, 66nffv 5805 . . . . . . . . 9  |-  F/_ y
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )
68 nfmpt22 6262 . . . . . . . . . 10  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  C )
6968, 66nffv 5805 . . . . . . . . 9  |-  F/_ y
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >.
)
7067, 69nfeq 2626 . . . . . . . 8  |-  F/ y ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )
71 opeq2 4167 . . . . . . . . . 10  |-  ( y  =  v  ->  <. x ,  y >.  =  <. x ,  v >. )
7271fveq2d 5802 . . . . . . . . 9  |-  ( y  =  v  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. x ,  v >. )
)
7371fveq2d 5802 . . . . . . . . 9  |-  ( y  =  v  ->  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. x ,  v
>. ) )
7472, 73eqeq12d 2476 . . . . . . . 8  |-  ( y  =  v  ->  (
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  v >. )
) )
7562, 70, 74cbvral 3047 . . . . . . 7  |-  ( A. y  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  v >. )
)
76 opeq1 4166 . . . . . . . . . 10  |-  ( x  =  u  ->  <. x ,  v >.  =  <. u ,  v >. )
7776fveq2d 5802 . . . . . . . . 9  |-  ( x  =  u  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. u ,  v >. )
)
7876fveq2d 5802 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. u ,  v
>. ) )
7977, 78eqeq12d 2476 . . . . . . . 8  |-  ( x  =  u  ->  (
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  <->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8079ralbidv 2845 . . . . . . 7  |-  ( x  =  u  ->  ( A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8175, 80syl5bb 257 . . . . . 6  |-  ( x  =  u  ->  ( A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8251, 61, 81cbvral 3047 . . . . 5  |-  ( A. x  e.  X  A. y  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. u  e.  X  A. v  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
)
8350, 82sylib 196 . . . 4  |-  ( ph  ->  A. u  e.  X  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
)
84 fveq2 5798 . . . . . 6  |-  ( w  =  <. u ,  v
>.  ->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >. )
)
85 fveq2 5798 . . . . . 6  |-  ( w  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >.
) )
8684, 85eqeq12d 2476 . . . . 5  |-  ( w  =  <. u ,  v
>.  ->  ( ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  w
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  w )  <-> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8786ralxp 5088 . . . 4  |-  ( A. w  e.  ( X  X.  Y ) ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  w
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  w )  <->  A. u  e.  X  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
)
8883, 87sylibr 212 . . 3  |-  ( ph  ->  A. w  e.  ( X  X.  Y ) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `  w ) )
89 fco 5675 . . . . . 6  |-  ( ( ( z  e.  Z  |->  B ) : Z --> U. M  /\  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z )  ->  ( (
z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) : ( X  X.  Y ) --> U. M )
9029, 11, 89syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) : ( X  X.  Y
) --> U. M )
91 ffn 5666 . . . . 5  |-  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) : ( X  X.  Y ) --> U. M  ->  (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) )  Fn  ( X  X.  Y ) )
9290, 91syl 16 . . . 4  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  Fn  ( X  X.  Y
) )
9337ralrimivva 2912 . . . . . 6  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  C  e.  U. M )
9445fmpt2 6750 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  Y  C  e.  U. M  <->  ( x  e.  X ,  y  e.  Y  |->  C ) : ( X  X.  Y
) --> U. M )
9593, 94sylib 196 . . . . 5  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C ) : ( X  X.  Y ) --> U. M )
96 ffn 5666 . . . . 5  |-  ( ( x  e.  X , 
y  e.  Y  |->  C ) : ( X  X.  Y ) --> U. M  ->  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y
) )
9795, 96syl 16 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y ) )
98 eqfnfv 5905 . . . 4  |-  ( ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  Fn  ( X  X.  Y
)  /\  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y
) )  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C )  <->  A. w  e.  ( X  X.  Y
) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w ) ) )
9992, 97, 98syl2anc 661 . . 3  |-  ( ph  ->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C )  <->  A. w  e.  ( X  X.  Y
) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w ) ) )
10088, 99mpbird 232 . 2  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C ) )
101 cnco 19001 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L )  /\  ( z  e.  Z  |->  B )  e.  ( L  Cn  M
) )  ->  (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) )  e.  ( ( J  tX  K
)  Cn  M ) )
1029, 22, 101syl2anc 661 . 2  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  e.  ( ( J  tX  K )  Cn  M
) )
103100, 102eqeltrrd 2543 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J  tX  K
)  Cn  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   <.cop 3990   U.cuni 4198    |-> cmpt 4457    X. cxp 4945    o. ccom 4951    Fn wfn 5520   -->wf 5521   ` cfv 5525  (class class class)co 6199    |-> cmpt2 6201   Topctop 18629  TopOnctopon 18630    Cn ccn 18959    tX ctx 19264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-map 7325  df-topgen 14500  df-top 18634  df-bases 18636  df-topon 18637  df-cn 18962  df-tx 19266
This theorem is referenced by:  cnmpt21f  19376  xkofvcn  19388  xkohmeo  19519  divstgplem  19822  prdstmdd  19825  divcn  20575  htpycom  20679  htpycc  20683  reparphti  20700  pcocn  20720  pcohtpylem  20722  pcopt  20725  pcopt2  20726  pcoass  20727  pcorevlem  20729  dipcn  24269
  Copyright terms: Public domain W3C validator