MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt21 Structured version   Unicode version

Theorem cnmpt21 19219
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt21.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt21.b  |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )
cnmpt21.c  |-  ( z  =  A  ->  B  =  C )
Assertion
Ref Expression
cnmpt21  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J  tX  K
)  Cn  M ) )
Distinct variable groups:    z, A    z, J    x, y, z, L    ph, x, y, z   
x, X, y, z   
x, M, y, z   
x, Y, y, z   
z, K    x, Z, y, z    x, B, y   
z, C
Allowed substitution hints:    A( x, y)    B( z)    C( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt21
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6089 . . . . . . . . . 10  |-  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. x ,  y
>. )
2 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  x  e.  X )
3 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
y  e.  Y )
4 cnmpt21.j . . . . . . . . . . . . . . . 16  |-  ( ph  ->  J  e.  (TopOn `  X ) )
5 cnmpt21.k . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
6 txtopon 19139 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
74, 5, 6syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
8 cnmpt21.l . . . . . . . . . . . . . . 15  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
9 cnmpt21.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
10 cnf2 18828 . . . . . . . . . . . . . . 15  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  Z )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> Z )
117, 8, 9, 10syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z )
12 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1312fmpt2 6636 . . . . . . . . . . . . . 14  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  Z  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> Z )
1411, 13sylibr 212 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  Z )
15 rsp2 2773 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  Z  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  Z ) )
1614, 15syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  Z ) )
1716imp 429 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  A  e.  Z )
1812ovmpt4g 6208 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  Z )  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
192, 3, 17, 18syl3anc 1218 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
201, 19syl5eqr 2484 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
)  =  A )
2120fveq2d 5690 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
) )  =  ( ( z  e.  Z  |->  B ) `  A
) )
22 cnmpt21.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )
23 cntop2 18820 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Z  |->  B )  e.  ( L  Cn  M )  ->  M  e.  Top )
2422, 23syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  Top )
25 eqid 2438 . . . . . . . . . . . . . . 15  |-  U. M  =  U. M
2625toptopon 18513 . . . . . . . . . . . . . 14  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
2724, 26sylib 196 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
28 cnf2 18828 . . . . . . . . . . . . 13  |-  ( ( L  e.  (TopOn `  Z )  /\  M  e.  (TopOn `  U. M )  /\  ( z  e.  Z  |->  B )  e.  ( L  Cn  M
) )  ->  (
z  e.  Z  |->  B ) : Z --> U. M
)
298, 27, 22, 28syl3anc 1218 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  Z  |->  B ) : Z --> U. M )
30 eqid 2438 . . . . . . . . . . . . 13  |-  ( z  e.  Z  |->  B )  =  ( z  e.  Z  |->  B )
3130fmpt 5859 . . . . . . . . . . . 12  |-  ( A. z  e.  Z  B  e.  U. M  <->  ( z  e.  Z  |->  B ) : Z --> U. M
)
3229, 31sylibr 212 . . . . . . . . . . 11  |-  ( ph  ->  A. z  e.  Z  B  e.  U. M )
3332adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  A. z  e.  Z  B  e.  U. M )
34 cnmpt21.c . . . . . . . . . . . 12  |-  ( z  =  A  ->  B  =  C )
3534eleq1d 2504 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( B  e.  U. M  <->  C  e.  U. M ) )
3635rspcv 3064 . . . . . . . . . 10  |-  ( A  e.  Z  ->  ( A. z  e.  Z  B  e.  U. M  ->  C  e.  U. M ) )
3717, 33, 36sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  C  e.  U. M )
3834, 30fvmptg 5767 . . . . . . . . 9  |-  ( ( A  e.  Z  /\  C  e.  U. M )  ->  ( ( z  e.  Z  |->  B ) `
 A )  =  C )
3917, 37, 38syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  A )  =  C )
4021, 39eqtrd 2470 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
) )  =  C )
41 opelxpi 4866 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
42 fvco3 5763 . . . . . . . 8  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z  /\  <. x ,  y >.  e.  ( X  X.  Y ) )  ->  ( (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. x ,  y >. )  =  ( ( z  e.  Z  |->  B ) `
 ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. x ,  y
>. ) ) )
4311, 41, 42syl2an 477 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( z  e.  Z  |->  B ) `  (
( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >. )
) )
44 df-ov 6089 . . . . . . . 8  |-  ( x ( x  e.  X ,  y  e.  Y  |->  C ) y )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. x ,  y
>. )
45 eqid 2438 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  C )  =  ( x  e.  X ,  y  e.  Y  |->  C )
4645ovmpt4g 6208 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  Y  /\  C  e.  U. M )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  C ) y )  =  C )
472, 3, 37, 46syl3anc 1218 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( x ( x  e.  X ,  y  e.  Y  |->  C ) y )  =  C )
4844, 47syl5eqr 2484 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >.
)  =  C )
4940, 43, 483eqtr4d 2480 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
)
5049ralrimivva 2803 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
)
51 nfv 1673 . . . . . 6  |-  F/ u A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
52 nfcv 2574 . . . . . . 7  |-  F/_ x Y
53 nfcv 2574 . . . . . . . . . 10  |-  F/_ x
( z  e.  Z  |->  B )
54 nfmpt21 6148 . . . . . . . . . 10  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
5553, 54nfco 5000 . . . . . . . . 9  |-  F/_ x
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )
56 nfcv 2574 . . . . . . . . 9  |-  F/_ x <. u ,  v >.
5755, 56nffv 5693 . . . . . . . 8  |-  F/_ x
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )
58 nfmpt21 6148 . . . . . . . . 9  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  C )
5958, 56nffv 5693 . . . . . . . 8  |-  F/_ x
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >.
)
6057, 59nfeq 2581 . . . . . . 7  |-  F/ x
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
6152, 60nfral 2764 . . . . . 6  |-  F/ x A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
62 nfv 1673 . . . . . . . 8  |-  F/ v ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
63 nfcv 2574 . . . . . . . . . . 11  |-  F/_ y
( z  e.  Z  |->  B )
64 nfmpt22 6149 . . . . . . . . . . 11  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
6563, 64nfco 5000 . . . . . . . . . 10  |-  F/_ y
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )
66 nfcv 2574 . . . . . . . . . 10  |-  F/_ y <. x ,  v >.
6765, 66nffv 5693 . . . . . . . . 9  |-  F/_ y
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )
68 nfmpt22 6149 . . . . . . . . . 10  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  C )
6968, 66nffv 5693 . . . . . . . . 9  |-  F/_ y
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >.
)
7067, 69nfeq 2581 . . . . . . . 8  |-  F/ y ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )
71 opeq2 4055 . . . . . . . . . 10  |-  ( y  =  v  ->  <. x ,  y >.  =  <. x ,  v >. )
7271fveq2d 5690 . . . . . . . . 9  |-  ( y  =  v  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. x ,  v >. )
)
7371fveq2d 5690 . . . . . . . . 9  |-  ( y  =  v  ->  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. x ,  v
>. ) )
7472, 73eqeq12d 2452 . . . . . . . 8  |-  ( y  =  v  ->  (
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  v >. )
) )
7562, 70, 74cbvral 2938 . . . . . . 7  |-  ( A. y  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  v >. )
)
76 opeq1 4054 . . . . . . . . . 10  |-  ( x  =  u  ->  <. x ,  v >.  =  <. u ,  v >. )
7776fveq2d 5690 . . . . . . . . 9  |-  ( x  =  u  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. u ,  v >. )
)
7876fveq2d 5690 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. u ,  v
>. ) )
7977, 78eqeq12d 2452 . . . . . . . 8  |-  ( x  =  u  ->  (
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  <->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8079ralbidv 2730 . . . . . . 7  |-  ( x  =  u  ->  ( A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8175, 80syl5bb 257 . . . . . 6  |-  ( x  =  u  ->  ( A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8251, 61, 81cbvral 2938 . . . . 5  |-  ( A. x  e.  X  A. y  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. u  e.  X  A. v  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
)
8350, 82sylib 196 . . . 4  |-  ( ph  ->  A. u  e.  X  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
)
84 fveq2 5686 . . . . . 6  |-  ( w  =  <. u ,  v
>.  ->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >. )
)
85 fveq2 5686 . . . . . 6  |-  ( w  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >.
) )
8684, 85eqeq12d 2452 . . . . 5  |-  ( w  =  <. u ,  v
>.  ->  ( ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  w
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  w )  <-> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8786ralxp 4976 . . . 4  |-  ( A. w  e.  ( X  X.  Y ) ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  w
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  w )  <->  A. u  e.  X  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
)
8883, 87sylibr 212 . . 3  |-  ( ph  ->  A. w  e.  ( X  X.  Y ) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `  w ) )
89 fco 5563 . . . . . 6  |-  ( ( ( z  e.  Z  |->  B ) : Z --> U. M  /\  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z )  ->  ( (
z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) : ( X  X.  Y ) --> U. M )
9029, 11, 89syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) : ( X  X.  Y
) --> U. M )
91 ffn 5554 . . . . 5  |-  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) : ( X  X.  Y ) --> U. M  ->  (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) )  Fn  ( X  X.  Y ) )
9290, 91syl 16 . . . 4  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  Fn  ( X  X.  Y
) )
9337ralrimivva 2803 . . . . . 6  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  C  e.  U. M )
9445fmpt2 6636 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  Y  C  e.  U. M  <->  ( x  e.  X ,  y  e.  Y  |->  C ) : ( X  X.  Y
) --> U. M )
9593, 94sylib 196 . . . . 5  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C ) : ( X  X.  Y ) --> U. M )
96 ffn 5554 . . . . 5  |-  ( ( x  e.  X , 
y  e.  Y  |->  C ) : ( X  X.  Y ) --> U. M  ->  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y
) )
9795, 96syl 16 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y ) )
98 eqfnfv 5792 . . . 4  |-  ( ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  Fn  ( X  X.  Y
)  /\  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y
) )  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C )  <->  A. w  e.  ( X  X.  Y
) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w ) ) )
9992, 97, 98syl2anc 661 . . 3  |-  ( ph  ->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C )  <->  A. w  e.  ( X  X.  Y
) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w ) ) )
10088, 99mpbird 232 . 2  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C ) )
101 cnco 18845 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L )  /\  ( z  e.  Z  |->  B )  e.  ( L  Cn  M
) )  ->  (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) )  e.  ( ( J  tX  K
)  Cn  M ) )
1029, 22, 101syl2anc 661 . 2  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  e.  ( ( J  tX  K )  Cn  M
) )
103100, 102eqeltrrd 2513 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J  tX  K
)  Cn  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   <.cop 3878   U.cuni 4086    e. cmpt 4345    X. cxp 4833    o. ccom 4839    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   Topctop 18473  TopOnctopon 18474    Cn ccn 18803    tX ctx 19108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-map 7208  df-topgen 14374  df-top 18478  df-bases 18480  df-topon 18481  df-cn 18806  df-tx 19110
This theorem is referenced by:  cnmpt21f  19220  xkofvcn  19232  xkohmeo  19363  divstgplem  19666  prdstmdd  19669  divcn  20419  htpycom  20523  htpycc  20527  reparphti  20544  pcocn  20564  pcohtpylem  20566  pcopt  20569  pcopt2  20570  pcoass  20571  pcorevlem  20573  dipcn  24069
  Copyright terms: Public domain W3C validator