MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1t Structured version   Unicode version

Theorem cnmpt1t 19241
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
Assertion
Ref Expression
cnmpt1t  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Distinct variable groups:    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt1t
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponuni 18535 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3 mpteq1 4375 . . . 4  |-  ( X  =  U. J  -> 
( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
41, 2, 33syl 20 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
5 simpr 461 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
6 cnmpt11.a . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
7 cntop2 18848 . . . . . . . . . . 11  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  K  e.  Top )
9 eqid 2443 . . . . . . . . . . 11  |-  U. K  =  U. K
109toptopon 18541 . . . . . . . . . 10  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 196 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
12 cnf2 18856 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  A ) : X --> U. K
)
131, 11, 6, 12syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> U. K )
14 eqid 2443 . . . . . . . . 9  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
1514fmpt 5867 . . . . . . . 8  |-  ( A. x  e.  X  A  e.  U. K  <->  ( x  e.  X  |->  A ) : X --> U. K
)
1613, 15sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A  e.  U. K )
1716r19.21bi 2817 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  U. K )
1814fvmpt2 5784 . . . . . 6  |-  ( ( x  e.  X  /\  A  e.  U. K )  ->  ( ( x  e.  X  |->  A ) `
 x )  =  A )
195, 17, 18syl2anc 661 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  A ) `  x
)  =  A )
20 cnmpt1t.b . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
21 cntop2 18848 . . . . . . . . . . 11  |-  ( ( x  e.  X  |->  B )  e.  ( J  Cn  L )  ->  L  e.  Top )
2220, 21syl 16 . . . . . . . . . 10  |-  ( ph  ->  L  e.  Top )
23 eqid 2443 . . . . . . . . . . 11  |-  U. L  =  U. L
2423toptopon 18541 . . . . . . . . . 10  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
2522, 24sylib 196 . . . . . . . . 9  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
26 cnf2 18856 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  X  |->  B ) : X --> U. L
)
271, 25, 20, 26syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> U. L )
28 eqid 2443 . . . . . . . . 9  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
2928fmpt 5867 . . . . . . . 8  |-  ( A. x  e.  X  B  e.  U. L  <->  ( x  e.  X  |->  B ) : X --> U. L
)
3027, 29sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  B  e.  U. L )
3130r19.21bi 2817 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  U. L )
3228fvmpt2 5784 . . . . . 6  |-  ( ( x  e.  X  /\  B  e.  U. L )  ->  ( ( x  e.  X  |->  B ) `
 x )  =  B )
335, 31, 32syl2anc 661 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  B ) `  x
)  =  B )
3419, 33opeq12d 4070 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. A ,  B >. )
3534mpteq2dva 4381 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
364, 35eqtr3d 2477 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
37 eqid 2443 . . . 4  |-  U. J  =  U. J
38 nfcv 2582 . . . . 5  |-  F/_ y <. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >.
39 nffvmpt1 5702 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  A ) `  y )
40 nffvmpt1 5702 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  B ) `  y )
4139, 40nfop 4078 . . . . 5  |-  F/_ x <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >.
42 fveq2 5694 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  A ) `  x
)  =  ( ( x  e.  X  |->  A ) `  y ) )
43 fveq2 5694 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  B ) `  x
)  =  ( ( x  e.  X  |->  B ) `  y ) )
4442, 43opeq12d 4070 . . . . 5  |-  ( x  =  y  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `
 y ) >.
)
4538, 41, 44cbvmpt 4385 . . . 4  |-  ( x  e.  U. J  |->  <.
( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( y  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >. )
4637, 45txcnmpt 19200 . . 3  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  e.  ( J  Cn  ( K 
tX  L ) ) )
476, 20, 46syl2anc 661 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  e.  ( J  Cn  ( K  tX  L ) ) )
4836, 47eqeltrrd 2518 1  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   <.cop 3886   U.cuni 4094    e. cmpt 4353   -->wf 5417   ` cfv 5421  (class class class)co 6094   Topctop 18501  TopOnctopon 18502    Cn ccn 18831    tX ctx 19136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-1st 6580  df-2nd 6581  df-map 7219  df-topgen 14385  df-top 18506  df-bases 18508  df-topon 18509  df-cn 18834  df-tx 19138
This theorem is referenced by:  cnmpt12f  19242  xkoinjcn  19263  txcon  19265  imasnopn  19266  imasncld  19267  imasncls  19268  ptunhmeo  19384  xkohmeo  19391  cnrehmeo  20528
  Copyright terms: Public domain W3C validator