MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1k Structured version   Unicode version

Theorem cnmpt1k 20309
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptk1.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptk1.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt1k.m  |-  ( ph  ->  M  e.  (TopOn `  W ) )
cnmpt1k.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )
cnmpt1k.b  |-  ( ph  ->  ( y  e.  Y  |->  ( z  e.  Z  |->  B ) )  e.  ( K  Cn  ( M  ^ko  L ) ) )
cnmpt1k.c  |-  ( z  =  A  ->  B  =  C )
Assertion
Ref Expression
cnmpt1k  |-  ( ph  ->  ( y  e.  Y  |->  ( x  e.  X  |->  C ) )  e.  ( K  Cn  ( M  ^ko  J ) ) )
Distinct variable groups:    x, y, J    x, K, y    x, L, y    x, M, y   
x, z, Z, y   
z, A    x, B    ph, x, y    x, X, y    x, Y, y   
z, C    y, A
Allowed substitution hints:    ph( z)    A( x)    B( y, z)    C( x, y)    J( z)    K( z)    L( z)    M( z)    W( x, y, z)    X( z)    Y( z)

Proof of Theorem cnmpt1k
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cnmptk1.j . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmptk1.l . . . . . . 7  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
3 cnmpt1k.a . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )
4 cnf2 19877 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  (TopOn `  Z )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )  ->  ( x  e.  X  |->  A ) : X --> Z )
51, 2, 3, 4syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> Z )
6 eqid 2457 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
76fmpt 6053 . . . . . 6  |-  ( A. x  e.  X  A  e.  Z  <->  ( x  e.  X  |->  A ) : X --> Z )
85, 7sylibr 212 . . . . 5  |-  ( ph  ->  A. x  e.  X  A  e.  Z )
98adantr 465 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  A. x  e.  X  A  e.  Z )
10 eqidd 2458 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  (
x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
11 eqidd 2458 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  (
z  e.  Z  |->  B )  =  ( z  e.  Z  |->  B ) )
12 cnmpt1k.c . . . 4  |-  ( z  =  A  ->  B  =  C )
139, 10, 11, 12fmptcof 6066 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  (
( z  e.  Z  |->  B )  o.  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  C ) )
1413mpteq2dva 4543 . 2  |-  ( ph  ->  ( y  e.  Y  |->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X  |->  A ) ) )  =  ( y  e.  Y  |->  ( x  e.  X  |->  C ) ) )
15 cnmptk1.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
16 cnmpt1k.b . . 3  |-  ( ph  ->  ( y  e.  Y  |->  ( z  e.  Z  |->  B ) )  e.  ( K  Cn  ( M  ^ko  L ) ) )
17 topontop 19554 . . . . 5  |-  ( L  e.  (TopOn `  Z
)  ->  L  e.  Top )
182, 17syl 16 . . . 4  |-  ( ph  ->  L  e.  Top )
19 cnmpt1k.m . . . . 5  |-  ( ph  ->  M  e.  (TopOn `  W ) )
20 topontop 19554 . . . . 5  |-  ( M  e.  (TopOn `  W
)  ->  M  e.  Top )
2119, 20syl 16 . . . 4  |-  ( ph  ->  M  e.  Top )
22 eqid 2457 . . . . 5  |-  ( M  ^ko  L )  =  ( M  ^ko  L )
2322xkotopon 20227 . . . 4  |-  ( ( L  e.  Top  /\  M  e.  Top )  ->  ( M  ^ko  L )  e.  (TopOn `  ( L  Cn  M
) ) )
2418, 21, 23syl2anc 661 . . 3  |-  ( ph  ->  ( M  ^ko  L )  e.  (TopOn `  ( L  Cn  M
) ) )
2521, 3xkoco1cn 20284 . . 3  |-  ( ph  ->  ( w  e.  ( L  Cn  M ) 
|->  ( w  o.  (
x  e.  X  |->  A ) ) )  e.  ( ( M  ^ko  L )  Cn  ( M  ^ko  J ) ) )
26 coeq1 5170 . . 3  |-  ( w  =  ( z  e.  Z  |->  B )  -> 
( w  o.  (
x  e.  X  |->  A ) )  =  ( ( z  e.  Z  |->  B )  o.  (
x  e.  X  |->  A ) ) )
2715, 16, 24, 25, 26cnmpt11 20290 . 2  |-  ( ph  ->  ( y  e.  Y  |->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X  |->  A ) ) )  e.  ( K  Cn  ( M  ^ko  J ) ) )
2814, 27eqeltrrd 2546 1  |-  ( ph  ->  ( y  e.  Y  |->  ( x  e.  X  |->  C ) )  e.  ( K  Cn  ( M  ^ko  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807    |-> cmpt 4515    o. ccom 5012   -->wf 5590   ` cfv 5594  (class class class)co 6296   Topctop 19521  TopOnctopon 19522    Cn ccn 19852    ^ko cxko 20188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-fin 7539  df-fi 7889  df-rest 14840  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529  df-cn 19855  df-cmp 20014  df-xko 20190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator