![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1ip | Structured version Visualization version Unicode version |
Description: Continuity of inner
product; analogue of cnmpt12f 20758 which cannot be
used directly because ![]() |
Ref | Expression |
---|---|
cnmpt1ip.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cnmpt1ip.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cnmpt1ip.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cnmpt1ip.r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cnmpt1ip.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cnmpt1ip.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cnmpt1ip.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cnmpt1ip |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1ip.k |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cnmpt1ip.r |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | cphngp 22229 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | ngptps 21694 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3syl 18 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | eqid 2471 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | cnmpt1ip.j |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | istps 20028 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 5, 8 | sylib 201 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | cnmpt1ip.a |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | cnf2 20342 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 1, 9, 10, 11 | syl3anc 1292 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | eqid 2471 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 13 | fmpt 6058 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 12, 14 | sylibr 217 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15 | r19.21bi 2776 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | cnmpt1ip.b |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | cnf2 20342 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 1, 9, 17, 18 | syl3anc 1292 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | eqid 2471 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 20 | fmpt 6058 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 19, 21 | sylibr 217 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22 | r19.21bi 2776 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | cnmpt1ip.h |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
25 | eqid 2471 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | 6, 24, 25 | ipfval 19293 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 16, 23, 26 | syl2anc 673 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 27 | mpteq2dva 4482 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | cnmpt1ip.c |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 25, 7, 29 | ipcn 22295 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 2, 30 | syl 17 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 1, 10, 17, 31 | cnmpt12f 20758 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 28, 32 | eqeltrrd 2550 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-8 1906 ax-9 1913 ax-10 1932 ax-11 1937 ax-12 1950 ax-13 2104 ax-ext 2451 ax-rep 4508 ax-sep 4518 ax-nul 4527 ax-pow 4579 ax-pr 4639 ax-un 6602 ax-inf2 8164 ax-cnex 9613 ax-resscn 9614 ax-1cn 9615 ax-icn 9616 ax-addcl 9617 ax-addrcl 9618 ax-mulcl 9619 ax-mulrcl 9620 ax-mulcom 9621 ax-addass 9622 ax-mulass 9623 ax-distr 9624 ax-i2m1 9625 ax-1ne0 9626 ax-1rid 9627 ax-rnegex 9628 ax-rrecex 9629 ax-cnre 9630 ax-pre-lttri 9631 ax-pre-lttrn 9632 ax-pre-ltadd 9633 ax-pre-mulgt0 9634 ax-pre-sup 9635 ax-addf 9636 ax-mulf 9637 |
This theorem depends on definitions: df-bi 190 df-or 377 df-an 378 df-3or 1008 df-3an 1009 df-tru 1455 df-ex 1672 df-nf 1676 df-sb 1806 df-eu 2323 df-mo 2324 df-clab 2458 df-cleq 2464 df-clel 2467 df-nfc 2601 df-ne 2643 df-nel 2644 df-ral 2761 df-rex 2762 df-reu 2763 df-rmo 2764 df-rab 2765 df-v 3033 df-sbc 3256 df-csb 3350 df-dif 3393 df-un 3395 df-in 3397 df-ss 3404 df-pss 3406 df-nul 3723 df-if 3873 df-pw 3944 df-sn 3960 df-pr 3962 df-tp 3964 df-op 3966 df-uni 4191 df-int 4227 df-iun 4271 df-iin 4272 df-br 4396 df-opab 4455 df-mpt 4456 df-tr 4491 df-eprel 4750 df-id 4754 df-po 4760 df-so 4761 df-fr 4798 df-se 4799 df-we 4800 df-xp 4845 df-rel 4846 df-cnv 4847 df-co 4848 df-dm 4849 df-rn 4850 df-res 4851 df-ima 4852 df-pred 5387 df-ord 5433 df-on 5434 df-lim 5435 df-suc 5436 df-iota 5553 df-fun 5591 df-fn 5592 df-f 5593 df-f1 5594 df-fo 5595 df-f1o 5596 df-fv 5597 df-isom 5598 df-riota 6270 df-ov 6311 df-oprab 6312 df-mpt2 6313 df-of 6550 df-om 6712 df-1st 6812 df-2nd 6813 df-supp 6934 df-tpos 6991 df-wrecs 7046 df-recs 7108 df-rdg 7146 df-1o 7200 df-2o 7201 df-oadd 7204 df-er 7381 df-map 7492 df-ixp 7541 df-en 7588 df-dom 7589 df-sdom 7590 df-fin 7591 df-fsupp 7902 df-fi 7943 df-sup 7974 df-inf 7975 df-oi 8043 df-card 8391 df-cda 8616 df-pnf 9695 df-mnf 9696 df-xr 9697 df-ltxr 9698 df-le 9699 df-sub 9882 df-neg 9883 df-div 10292 df-nn 10632 df-2 10690 df-3 10691 df-4 10692 df-5 10693 df-6 10694 df-7 10695 df-8 10696 df-9 10697 df-10 10698 df-n0 10894 df-z 10962 df-dec 11075 df-uz 11183 df-q 11288 df-rp 11326 df-xneg 11432 df-xadd 11433 df-xmul 11434 df-ico 11666 df-icc 11667 df-fz 11811 df-fzo 11943 df-seq 12252 df-exp 12311 df-hash 12554 df-cj 13239 df-re 13240 df-im 13241 df-sqrt 13375 df-abs 13376 df-struct 15201 df-ndx 15202 df-slot 15203 df-base 15204 df-sets 15205 df-ress 15206 df-plusg 15281 df-mulr 15282 df-starv 15283 df-sca 15284 df-vsca 15285 df-ip 15286 df-tset 15287 df-ple 15288 df-ds 15290 df-unif 15291 df-hom 15292 df-cco 15293 df-rest 15399 df-topn 15400 df-0g 15418 df-gsum 15419 df-topgen 15420 df-pt 15421 df-prds 15424 df-xrs 15478 df-qtop 15484 df-imas 15485 df-xps 15488 df-mre 15570 df-mrc 15571 df-acs 15573 df-mgm 16566 df-sgrp 16605 df-mnd 16615 df-mhm 16660 df-submnd 16661 df-grp 16751 df-minusg 16752 df-sbg 16753 df-mulg 16754 df-subg 16892 df-ghm 16959 df-cntz 17049 df-cmn 17510 df-abl 17511 df-mgp 17802 df-ur 17814 df-ring 17860 df-cring 17861 df-oppr 17929 df-dvdsr 17947 df-unit 17948 df-invr 17978 df-dvr 17989 df-rnghom 18021 df-drng 18055 df-subrg 18084 df-staf 18151 df-srng 18152 df-lmod 18171 df-lmhm 18323 df-lvec 18404 df-sra 18473 df-rgmod 18474 df-psmet 19039 df-xmet 19040 df-met 19041 df-bl 19042 df-mopn 19043 df-cnfld 19048 df-phl 19270 df-ipf 19271 df-top 19998 df-bases 19999 df-topon 20000 df-topsp 20001 df-cn 20320 df-cnp 20321 df-tx 20654 df-hmeo 20847 df-xms 21413 df-ms 21414 df-tms 21415 df-nm 21675 df-ngp 21676 df-tng 21677 df-nlm 21679 df-clm 22172 df-cph 22224 df-tch 22225 |
This theorem is referenced by: csscld 22298 clsocv 22299 |
Copyright terms: Public domain | W3C validator |