MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmetdval Unicode version

Theorem cnmetdval 18758
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypothesis
Ref Expression
cnmetdval.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnmetdval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )

Proof of Theorem cnmetdval
StepHypRef Expression
1 subf 9263 . . 3  |-  -  :
( CC  X.  CC )
--> CC
2 opelxpi 4869 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
<. A ,  B >.  e.  ( CC  X.  CC ) )
3 fvco3 5759 . . 3  |-  ( (  -  : ( CC 
X.  CC ) --> CC 
/\  <. A ,  B >.  e.  ( CC  X.  CC ) )  ->  (
( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  (  -  `  <. A ,  B >. )
) )
41, 2, 3sylancr 645 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  (  -  `  <. A ,  B >. ) ) )
5 df-ov 6043 . . 3  |-  ( A D B )  =  ( D `  <. A ,  B >. )
6 cnmetdval.1 . . . 4  |-  D  =  ( abs  o.  -  )
76fveq1i 5688 . . 3  |-  ( D `
 <. A ,  B >. )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
85, 7eqtri 2424 . 2  |-  ( A D B )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
9 df-ov 6043 . . 3  |-  ( A  -  B )  =  (  -  `  <. A ,  B >. )
109fveq2i 5690 . 2  |-  ( abs `  ( A  -  B
) )  =  ( abs `  (  -  ` 
<. A ,  B >. ) )
114, 8, 103eqtr4g 2461 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   <.cop 3777    X. cxp 4835    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944    - cmin 9247   abscabs 11994
This theorem is referenced by:  cnmet  18759  cnbl0  18761  cnblcld  18762  cnfldnm  18766  remetdval  18773  blcvx  18782  recld2  18798  zdis  18800  reperflem  18802  addcnlem  18847  divcn  18851  cncfmet  18891  cnheibor  18933  cnllycmp  18934  ipcn  19153  lmclim  19208  cncmet  19228  ovolfsval  19320  ellimc3  19719  lhop1lem  19850  ftc1lem6  19878  ulmdvlem1  20269  psercn  20295  pserdvlem2  20297  abelthlem2  20301  abelthlem3  20302  abelthlem5  20304  abelthlem7  20307  abelth  20310  dvlog2lem  20496  efopn  20502  logtayl  20504  logtayl2  20506  cxpcn3  20585  rlimcnp  20757  xrlimcnp  20760  efrlim  20761  ftalem3  20810  smcnlem  22146  hhcnf  23361  tpr2rico  24263  qqhcn  24328  qqhucn  24329  lgamucov  24775  lgamcvg2  24792  ftc1cnnc  26178  cntotbnd  26395  iccbnd  26439  stirlinglem5  27694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081  df-sub 9249
  Copyright terms: Public domain W3C validator